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Daily variation in environmental temperatures can limit the amount of time lizards have 
to perform important activities, such as foraging or mating. We compare a number of 
methodological choices for the spatial estimation of lizard’s thermally constrained activity 
times, and compare their power to predict the distribution of a tropical lizard with pure 
environmental temperatures. Our results show that activity time can be a better predictor 
of distribution than environmental temperatures, if adequate methodology is used for its 
estimation. The use of such biologically derived predictors might increase the realism of spatial 
models, allowing better understanding lizard’s biogeography and how climate change affects 
their distribution.
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Environmental temperatures influence ectotherms’ physiology and capacity to per-
form activities necessary for survival and reproduction. Time available to perform 
those activities is determined by thermal tolerances and environmental temperatures. 
Estimates of activity time might enhance our ability to predict suitable areas for spe-
cies’ persistence in face of climate warming, compared to the exclusive use of environ-
mental temperatures, without considering thermal tolerances. We compare the ability 
of environmental temperatures and estimates of activity time to predict the geographic 
distribution of a tropical lizard, Tropidurus torquatus. We compared 105 estimates of 
activity time, resulting from the combination of four methodological decisions: 1) 
how to estimate daily environmental temperature variation (modeling a sinusoid wave 
ranging from monthly minimum to maximum temperature, extrapolating from opera-
tive temperatures measured in field or using biophysical projections of microclimate)? 
2) In which temperature range are animals considered active? 3) Should these ranges 
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be determined from body temperatures obtained in laboratory or in field? And 4) should thermoregulation simulations be 
included in estimations? We show that models using estimates of activity time made with the sinusoid and biophysical meth-
ods had higher predictive accuracy than those using environmental temperatures alone. Estimates made using the central 90% 
of temperatures measured in a thermal gradient as the temperature range for activity also ranked higher than environmental 
temperatures. Thermoregulation simulations did not improve model accuracy. Precipitation ranked higher than thermally 
related predictors. Activity time adds important information to distribution modeling and should be considered as a predictor 
in studies of the distribution of ectotherms. The distribution of T. torquatus is restricted by precipitation and by the effect of 
lower temperatures on their time of activity and climate warming could lead to range expansion. We provide an R package 
‘Mapinguari’ with tools to generate spatial predictors based on the processes described herein.

Keywords: biogeography, bioinformatics, ecophysiology, mechanistic models, methodology evaluation, microclimate, species 
distribution modeling, thermal ecology, thermoregulatory behavior

Introduction

Environmental temperatures influence ectotherms’ physi-
ology and their capacity to perform activities necessary for 
survival and reproduction. Variation in ambient tempera-
ture influences foraging behavior, digestive assimilation and 
escape from predators; activities critical for survival, growth 
and reproduction (Porter et al. 1973, Adolph 1990, Adolph 
and Porter 1993). Because of the dependence of physiologi-
cal processes on ambient temperature, most ectotherms are 
vulnerable to global climate change, especially in tropical 
areas (Deutsch et al. 2008, Huey et al. 2009, Sinervo et al. 
2010). For instance, several extirpations of lizard populations 
due to climate change have been documented and more are 
predicted to occur in the next decades (Sinervo et al. 2010, 
Foufopoulos et al. 2011, Pontes-da-Silva et al. 2018).

Physiology modulates the effect of abiotic conditions on 
behavior, phenology and dispersal, which influence popula-
tion dynamics and persistence (Huey 1991, Walther  et  al. 
2002, Kearney and Porter 2009). An example of this is the 
interaction of climate change with thermal tolerance, chang-
ing the time available for critical activities each day (Grant 
and Dunham 1988, Adolph and Porter 1993, Sinervo and 
Adolph 1994). This might constrain the energy an individ-
ual can allocate to growth, maintenance and reproduction 
(Porter et al. 1973, Sinervo and Adolph 1994, Kearney and 
Porter 2009), determining if a species is able to inhabit a cer-
tain area (Sinervo et al. 2010).

Estimating temperature effects on the activity time of 
ectotherms depends on two important parameters: 1) the 
temperature range in which individuals may be active and 
2) the environmental temperature variation experienced by 
individuals in nature. Numerous combinations of method-
ologies can be used to estimate those parameters, generating 
considerable variation in estimates of activity time, which 
could influence prediction accuracy. Therefore, researchers 
interested in ecophysiology need to make informed decisions 
before applying those methodologies.

A direct way to obtain temperature ranges for activity is 
to measure an animal’s body temperature in natural habitats, 
during an ecologically relevant period. However, the temper-
atures sampled may not capture the entire range of activity, 

since the latter may be restricted by predation risk, social 
interactions or lack of thermal opportunity (Hertz  et  al. 
1983, Autumn and Denardo 1995, Ibargüengoytía 2005). 
An alternative is to measure temperature ranges selected by 
an individual in the laboratory, using thermal gradient experi-
ments (Licht 1965). In a lab setting, animals would not incur 
the aforementioned thermoregulation costs. An advantage of 
thermal gradient experiments is that they usually provide a 
greater amount of data, compared to field sampling methods, 
as they provide opportunity for continuous sampling once 
the animal is at the gradient, while field methods generally 
allow for the sampling of a single body temperature at the 
moment of capture. However, the artificial conditions in a 
temperature gradient may subject individuals to stresses that 
affect their activity patterns and selected body temperature.

Important thermal traits, such as mean preferred tempera-
tures (Tmean) or ranges of preferred temperatures (Tset), can be 
estimated using laboratory data (Hertz et al. 1993), and we can 
apply the same calculations to generate similar indexes from 
field data, but it is important to determine which method 
produces the most informative estimates. Tmean is calculated 
as the mean or median temperature selected by individuals in 
thermal gradients, while Tset can be estimated as the complete 
range of temperatures measured or a quantile range around 
the median temperature (Hertz et al. 1993, Huey et al. 2009, 
Gutiérrez et al. 2010). The selection of Tmean or Tset to deter-
mine temperature ranges of activity, and which quantile to 
use for Tset, will influence results of subsequent analyses; thus, 
it is important to determine the parameter that produces the 
best estimates. Neurophysiological evidence suggests ecto-
therms regulate body temperatures between two set points 
(Firth and Turner 1982), but single set-points are widely used 
and available in the literature (Sinervo et al. 2010).

Species distribution models that include predictors based 
on biological processes, such as thermally constrained activity 
times, represent a more proximate approach than just using 
macroclimatic predictors (Elith et al. 2010, Dormann et al. 
2012, Fordham  et  al. 2018). The development of biologi-
cally inspired indices premised on the process of thermo-
regulation can improve the output of species distribution 
models (Kearney and Porter 2009), especially for ectotherms. 
Further complexity can be added to activity time predictors 
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by including microclimatic variation or simulations of ther-
moregulatory behavior. Those factors can have such impor-
tance as to override the need of physiological adaptations (i.e. 
the Bogert effect, Huey et al. 2003). However, the addition 
of complexity requires additional data, and might increase 
experimental and sampling errors; therefore, the benefits of 
increased complexity are not always evident, and these meth-
ods need to be thoroughly evaluated before they are used.

Our goal is to evaluate if thermally determined activity 
time estimates are better predictors of the geographic distri-
bution of a tropical lizard than the pure environmental tem-
perature measurements used to calculate those estimates, and 
which methodological decisions for the estimation of activity 
time generate better predictors. We assess the accuracy of dif-
ferent estimates of activity time in predicting the geographic 
distribution of the lizard Tropidurus torquatus (Squamata, 
Tropiduridae), generated under different methodologi-
cal decisions. Tropidurus torquatus occurs throughout the 
Cerrado savanna and Atlantic rainforest in South America 
(Rodrigues 1987). This species is locally abundant and 
conspicuous, making it convenient to collect and compare 
thermal ecology data across broad environmental gradients. 
Finally, we provide tools to facilitate the described estimates 
in a statistical package for the R programming environment, 
named ‘Mapinguari’.

Material and methods

Data collection

Distribution data
We used 359 distribution records from the literature and 
scientific collections spanning the range of Tropidurus tor-
quatus. To minimize the effects of spatial autocorrelation and 
sampling bias, we used function ‘clean_points’ from the R 
package Mapinguari to eliminate records within 40 km from 
each other, leaving us with 144 records. We empirically deter-
mined the size of the buffer area fitting Random Forest mod-
els under different buffers (1, 5, 10, 20, 30, 40 and 50 km) 
and comparing Moran’s I index (Gittleman and Kot 1990) 
calculated from the models’ residuals. We selected buffer dis-
tance based on the smaller distance resulting in no spatial 
autocorrelation. We estimated Moran’s I using the ‘Moran.I’ 
function from R package ‘ape’ (Paradis et al. 2004). Thirty 
percent of the distribution data, 44 records, was set aside for 
model cross-validation.

Physiological data
Between 2013 and 2017, we obtained physiological data 
from five populations of T. torquatus sampled during moni-
toring studies and field expeditions. Monitoring took place 
in Brasília, Distrito Federal (15°79′98″S, 47°86′45″W, 24 
individuals) and Nova Xavantina, Mato Grosso (14°66′44″S, 
52°35′85″W, four individuals). Short-term field sampling 
occurred at Gaúcha do Norte (12°96′56″S, 53°56′36″W, 

13 individuals) and Alta Floresta, Mato Grosso (9°87′65″S, 
56°08′55″W, three individuals); and Lagoa da Confusão, 
Tocantins (10°92′01″S, 50°18′33″W, eight individuals). We 
captured animals using pitfall traps, lassos and by hand.

We brought captured lizards to the laboratory, housed them 
individually and performed the thermal gradient experiments 
no longer than 24 h after capture. We measured the preferred 
temperature of each lizard using a thermal gradient, which con-
sisted of a terrarium made of MDF plywood (100 × 15 × 30 cm 
– l × w × h), open at the top and with 2 cm of substrate com-
posed of sand and vermiculite. We generated a thermal gradi-
ent approximately between 15°C and 50°C by placing a 60-W 
incandescent lamp at one end and an ice pack on the other 
(Paranjpe et al. 2013). Lizards were placed in the gradient for 
one hour while their body temperature was recorded every 
minute by a 1 mm thermocouple attached with tape to their 
abdomen and connected to a data logger. We allowed lizards 
to acclimate to the gradient for 10 min (Paranjpe et al. 2013) 
before recording body temperatures. We calculated for each 
individual and for the whole sample: 1) the range between the 
5th and 95th temperature percentile (T90), 2) range between 
the 25th and 75th temperature percentile (T50) and 3) average 
temperature (Tmean). Tmean and T50 have been used in previous 
studies (Sinervo et al. 2010, Kubisch et al. 2016, Piantoni et al. 
2016), and the broader range, T90, was chosen under the 
hypothesis that lizards spend almost all of their time in the 
gradient at preferred temperatures.

We obtained field-active body temperatures from lizards at 
Brasília, Distrito Federal, from natural populations occurring 
within the city’s Zoo (15°85′12″S, 47°93′79″W, 1158 sam-
ples, 640 individuals, details in Wiederhecker  et  al. 2002), 
which was visited weekly from March 1996 to September 
1998, from 08 a.m. to 06 p.m., and at Santa Terezinha, 
Mato Grosso (10°37′5″S, 50°51′45″W, nine samples, nine 
individuals) in April 1999, from 12 p.m. to 02 p.m. Active 
animals (i.e. those in the open, basking or moving) were cap-
tured, individually marked by toe-clipping, and had their 
cloacal temperature measured with a quick reading cloacal 
thermometer (0.2°C precision) immediately after capture. 
We then performed the same calculations for laboratory T90, 
T50 and Tmean on the aggregated field body temperatures.

The different methods of collecting body temperatures 
result in very different data structures. While the laboratory 
experiments allow extensive sampling of fewer individuals, 
field sampling allows the collection of many individuals, but 
fewer replicates per individual. In the laboratory, we sampled 
52 individuals with a median of 65 samples per individual 
(standard deviation = 9.48), whereas in the field we sampled 
649 individuals with a median of one sample per individual 
(standard deviation = 1.58). This presents a challenge when 
comparing data from the two sources, because we could cal-
culate temperature ranges for each individual from the ther-
mal gradient, but not from individuals in the field. Therefore, 
for the thermal measurements collected in the wild, we 
pooled the data and assumed the estimated thermal toler-
ances characterized the individuals from the entire sample. 
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For laboratory data, we estimated temperature ranges as both 
averages of individual values or from the data aggregated from 
the whole sample, and then assessed which choice generated 
better predictors of distribution. We performed an analysis 
of variance with repeated measures to evaluate whether the 
body temperatures measured in the thermal gradient differed 
among individuals between populations and analysis of vari-
ance to see if there were differences between individuals in 
the same population.

Operative environmental temperatures
We recorded operative temperatures using dataloggers with 
sensors attached to PVC models of equivalent size and color 
as Tropidurus torquatus. This methodology has been validated 
by previous studies with small ectotherms (Adolph 1990, 
Lara-Reséndiz et al. 2015, Kubisch et al. 2016, Kirchhof et al. 
2017). We placed models adjacent to pitfall trap arrays, in the 
locations where lizards were captured for the physiological 
trials, uniformly distributed in microhabitats where they were 
observed in activity – shaded and open spots on the ground, 
on termite mounds, and at the base of trees. Data loggers 
were deployed during months of August 2013 and April–July 
2014 in Brasília, August 2015–2016 in Nova Xavantina, 
August 2015 in Gaúcha do Norte, July–August 2016 in 
Lagoa da Confusão and July–August 2017 in Alta Floresta. 
Data loggers recorded temperatures every 10 min during the 
trapping period at each location. Variation in air tempera-
ture was also measured at the same time and locations, using 
another data logger without a PVC model attached to sen-
sors, which was protected from rain and solar radiation by a 
PVC case suspended about 30 cm from the ground and open 
at the bottom to expose the sensor to the air.

Data analysis

All analyses were performed in the R programming environ-
ment, ver. 3.5.1 (< www.r-project.org >). We used species 
distribution models to infer the accuracy of time of activity 
estimates and environmental variables in predicting the spe-
cies distribution. Considering the problem at hand, all esti-
mates are expected to be highly correlated. So, we fitted those 
models with two algorithms which are robust to multicol-
linearity (James et al. 2013): Random Forest, using R pack-
age ‘randomForest’ (Liaw and Wiener 2002) and Gradient 
Boosting, using R package ‘gbm’ (Ridgeway 2007).

Pseudoabsences
We generated 100 different sets of pseudoabsences to use in 
those models, each with 100 pseudoabsences, the same num-
ber of presences (Barbet-Massin et al. 2012). We generated 
pseudoabsences by using environmental profiling with one-
classification support vector machine (OCSVM), through 
R package ‘mopa’ (Senay  et  al. 2013). This methodology 
restricts the background sampled for pseudoabsences to a 
distance from presence points determined by the variation in 
environmental conditions and selects points representing that 
variation. We obtained environmental variables (maximum 

daily temperature, minimum daily temperature, average daily 
temperature, precipitation and altitude) from the WorldClim 
2.0 database at 2.5 arc-min resolution for present-day (1970–
2000) (Fick and Hijmans 2017). Every subsequent analysis 
was repeated for each pseudoabsence set and the results were 
averaged between sets.

To perform time of activity estimates, we developed a pack-
age for R, named ‘Mapinguari’ that provides tools for incor-
porating diverse biological processes in species distribution 
modeling. ‘Mapinguari’ is an open source program and avail-
able on a GitHub repository < www.github.com/gabrielhoc/
Mapinguari > with a tutorial on < www.gabrielhoc.github.io/
Mapinguari >. It has been submitted to the Comprehensive 
R Archive Network (CRAN) and will be available for instal-
lation through the R interface once it is approved. Next we 
detail the methods to estimate time of activity.

Temperature variation estimation
We used three different methods to estimate daily tempera-
ture variation to which animals are subjected, and to deter-
mine the proportion of time ambient conditions within or 
outside the temperature ranges for activity:

1. Sinusoid method. We used the approach of Sinervo and 
collaborators (Sinervo  et  al. 2010) implemented in the 
Mapinguari function ‘sin_h’. This approach requires the 
least amount of data and assumes lizard body tempera-
ture tracks environmental temperatures. It models daily 
air temperature variation as a sinusoidal curve ranging 
between the maximum and minimum daily air tempera-
tures at a location, extracted from WorldClim surfaces. 
Then we recorded how much time the environmental 
temperature is within T90, within T50, and above Tmean, for 
both field and lab temperature ranges at each occurrence 
and pseudoabsence point. We also did the same calcula-
tions for the lower and upper temperatures thresholds 
of T90 and T50 to verify if colder or hotter thresholds are 
more relevant than the whole range of activity. We used a 
time resolution of one hour to make estimates compara-
ble with the microclim method (below), which is derived 
from hourly data. Hours above Tmean is a measure of hours 
of restriction to activity, so it should be interpreted on 
the opposite ways as the other metrics. These estimates of 
activity time, as well as all subsequent ones, were capped 
by day length at each location, calculated using Corripio’s 
method (Corripio 2003).

2. Operative temperature method. We used daily tempera-
ture variation collected with operative temperatures 
models (Te) (Bakken 1992) to estimate time of activity 
for each day, location and microhabitat sampled, using 
the same temperature ranges mentioned above. These 
data were regressed against maximum daily air tempera-
tures for the same period, using Richards’ growth model 
(Kirchhof  et  al. 2017, Sinervo  et  al. 2018). The coeffi-
cients obtained were used to predict time of activity under 
present-day maximum daily air temperature data from 
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the WorldClim 2.0 database at 2.5 arc-min resolution, for 
each occurrence and pseudoabsence point.

3. Microclim method. We used the microclim database 
(Kearney  et  al. 2014), which simulates environmen-
tal temperatures for each hour of the day in six levels of 
shade and different kinds of substrate for the whole world. 
We used air temperatures 1 cm above the soil substrate, 
which we regarded as the most commonly used by T. tor-
quatus based on field observations. We used the function 
‘summary_microclim’ from Mapinguari to estimate time 
of activity, for the same temperature ranges mentioned 
above, at each shade level, for each occurrence or pseu-
doabsence point (Sinervo et al. 2018). Microclim data are 
available at 10 arc-min resolution, so they were re-scaled 
to 2.5 arc-min raster using bilinear interpolation in pack-
age ‘raster’ (Hijmans et al. 2016).

Thermoregulation simulation
Operative temperature and microclim methods provide 
information on microclimatic variation at each site, so we 
simulated thermoregulation, assuming lizards would choose 
any microhabitat with temperatures inside the preferred tem-
perature range when available. For comparison, we gener-
ated estimates of time of activity under no thermoregulation 
by averaging the time of activity between all microhabitats. 
Names used to represent each estimate are summarized in 
Supplementary material Appendix 1 Table A1, hereafter the 
estimates will be designated by these names.

Predictor evaluation
Estimates of activity time were used as predictors of species 
distribution in models constructed with different algorithms, 
and their quality as predictors was assessed using the proto-
col describe below. Each model also included average annual 
maximum air temperature as a comparison, since estimates 
were derived from maximum air temperature and should 
outperform it if they add any relevant information. We also 
include total annual precipitation, to control for variation 
not associated with thermal physiology.

We evaluated the performance of each algorithm by the area 
under the receiver operating characteristic curve (AUC), con-
structed with the set of presence records set aside for cross-vali-
dation and 100 sets of pseudoabsences. The agreement between 
algorithms variable importance indexes was used to determine 
predictor importance. The importance index used for Random 
Forest was mean decrease in accuracy (Archer and Kimes 2008) 
and for Gradient Boosting, relative influence (Friedman 2001). 
Importance measures of variables obtained from each algorithm 
were grouped by each methodological decision, weighted by the 
AUC of each algorithm and averaged to obtain a consensus of 
importance of each decision. Finally, activity time estimates and 
climate variables with greater support were used to predict the 
potential distribution of the animal.

Results

Body temperatures measured in the thermal gradient did 
not differ significantly among populations (F = 2.424, df = 4, 
p = 0.06) but differed among individuals in each popula-
tion (Brasília: F = 199.31, df = 23, p < 0.0001; Alta Floresta: 
F = 1502.4, df = 2, p < 0.0001; Gaúcha do Norte: F = 180.82, 
df = 12, p < 0.0001; Lagoa da Confusão: F = 88.849, df = 7, 
p < 0.0001; Nova Xavantina: F = 9.51, df = 3, p < 0.0001). 
We observed substantial variation in the distribution of body 
temperatures when using the pooled data or among individu-
als within each population (Fig. 1). However, two patterns 
are apparent. First, lizards in some populations have a narrow 
range of temperatures in the gradient, e.g. Nova Xavantina 
and Alta Floresta. Second, lizards in other populations exhibit 
a mixed pattern of either broad or narrow ranges for Tmean, e.g. 
Gaúcha do Norte and Brasília. This pattern suggests those 
lizards are thermal generalists and are active at a wide range of 
temperature and each individual is not exploring their whole 
thermal tolerance range in the gradient. This suggests it is 
better to pool all body temperatures to characterize thermal 
tolerance ranges.

Median body temperature recorded in the thermal gradient 
was very similar to those measured on field-active lizards (lab-
oratory = 31.51°C, field = 32.65°C), but with higher standard 
deviation (laboratory = 6.02, field = 2.59). This led to broader 
temperature ranges for activity when compared to field esti-
mates. Physiological temperature thresholds and ranges for 
T. torquatus calculated from the gradient experiments had 
the following values: Tmean = 31.51°C (standard deviation: 
6.02), T50_lwr = 26.68°C, T50_upr = 36.6°C, T90_lwr = 20.8°C, 
T90_upr = 38.67°C, whereas estimates calculated from field 
temperatures had the following values Tmean = 32.6°C (stan-
dard deviation: 2.59), T50_lwr = 30.9°C, T50_upr = 34.6°C, T90_

lwr = 28°C, T90_upr = 36.4°C. Figure 2 shows the distribution of 
activity time estimates grouped under each methodological 
decision.

Random Forest had similar AUC (0.861 ± 0.042) to 
Gradient Boosting (0.843 ± 0.043). Predictor importance 
is summarized in Supplementary material Appendix 1 Table 
A2. Precipitation ranked highest for Gradient Boosting and 
third highest for Random Forest (Supplementary material 
Appendix 1 Table A2). For both algorithms, activity time 
estimates ranked higher than pure environmental tempera-
tures, with no regard to physiology. Estimate sin_t90_lwr_
lab (Supplementary material Appendix 1 Table A1) ranked 
highest among time of activity estimates on both algorithms 
(Supplementary material Appendix 1 Table A2). The con-
sensus between algorithms averaged for methodological 
decisions regarding the estimation of environmental temper-
atures experienced and thermal tolerances is summarized in 
Table 1 and 2, respectively. The distribution predicted by the 
most supported variables, sin_t90_lab_lwr and precipitation, 
is displayed on Fig. 3.
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Discussion

Our results suggest that including ecophysiological variables, 
such as time available for activity determined by tempera-
ture, increases the accuracy of species distribution models. 
All methodological decisions evaluated here greatly affected 
the quality of predictors and should be carefully considered 
before conducting similar analysis. Estimates under many 
permutations of methodological decisions ranked above 
pure environmental temperatures, and some were as much 
as five times more important based on the Random Forest 
algorithm and 20 times more with the Gradient Boosting 
algorithm (Supplementary material Appendix 1 Table A2). 
This indicates activity time is useful to model mechanisms 
by which temperature restricts the distribution of a tropical 
lizard. Our results add to the evidence that incorporating bio-
logical mechanisms improve the accuracy of species distribu-
tion models (Buckley et al. 2010, Urban et al. 2016).

The simplest temperature variation method, sinusoid, 
ranked highest in both algorithms (Supplementary material 
Appendix 1 Table A2), but not when averaged across all vari-
ables using this method, when it was a close second to the 
microclim method (Table 1). Thus, both methods are good 
options for estimating time of activity. Simulations based on 
the sinusoid model have the advantage of being simpler to 
estimate, lower in computational time and memory use, and 
simpler to extrapolate to future conditions. Simpler models 
have fewer sources of error and are less likely to overfit the 
data used to train them. The application of microclim has 
the advantage of including microclimatic variation in the 
analysis, which might be relevant to many species. Estimates 
made with the operative method ranked below pure environ-
mental temperatures indicating this method needs refine-
ment, perhaps by modeling how microclimates interact with 
microhabitat structure and macroclimate. Also, the operative 
method is likely to be very influenced by the deployment of 
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Figure 1. Distribution of preferred body temperatures of Tropidurus torquatus lizards from five populations in Brazil. On panels (a) through 
(e), each box plot represents body temperatures of a single individual collected every minute for one hour in a temperature gradient, exclud-
ing the first ten minutes and outliers, in five localities in Brazil. (a) Brasília, Distrito Federal, (b) Nova Xavantina, (c) Gaúcha do Norte and 
(d) Alta Floresta, state of Mato Grosso and (e) Lagoa da Confusão, state of Tocantins. Panel (f ) represents the distribution of the tempera-
tures of all individuals grouped together.
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operative models. Our uniform deployment of data loggers 
between microhabitats implies uniform access to each micro-
habitat, so this methodology could be improved by testing 
different deployment designs. Access to microhabitats might 
also be limited by dispersal capacity and species interactions, 
such as competition and predation. Predators and competi-
tors will also have their own thermal responses, which affect 
the strength of their interaction with Tropidurus torquatus. 

Those are complex processes and data relating to them are 
scarce, complicating the prospects of deriving a realistic and 
detailed model. Using simpler and general methods could 
yield more accurate predictors at lower costs.

Among time of activity estimates, the ones using tempera-
tures above the lower threshold of T90 measured in laboratory 
as the range of activity temperatures were the best to predict 
distribution (Table 1). The fact the lower threshold was more 
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Figure 2. Distribution of activity time estimates at known occurrence sites of Tropidurus torquatus. (a) Grouped by temperature variation 
method. Sinusoid simulates temperature variation as a sine wave spanning from daily maximum to minimum air temperatures. Operative 
used operative temperature models to measure daily temperature variations in situ and them extrapolated time of activity measures by cor-
relating it to air temperatures. Microclim used microclimatic surfaces (Kearney et al. 2014) containing estimates of daily temperature varia-
tion in different microhabitats. (b) Grouped by temperature range of activity. Tmean: above average body temperature, T50_lwr: above 25th 
quantile, T50_upr: above 75th quanile, T90_lwr above 5th quantile, T90_upr above 95th quantile. T50: between T50_lwr and T50_upr and T90: between 
T90_lwr and T90_upr. (c) Grouped by origin of body temperatures used to estimate temperature ranges of activity (laboratory or field), (d) 
grouped by use of thermoregulation simulations.
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important shows lower temperatures are the most limiting to 
T. torquatus distribution, unlike other species studied previ-
ously (Sinervo et al. 2010, Andrango et al. 2016, Medina et al. 
2016). The upper threshold of T90 was rarely crossed (Fig. 2, 
Supplementary material Appendix 1 Table A2), showing that 
T. torquatus rarely experiences temperatures above its ther-
mal tolerance range within its current distribution, therefore 
those temperatures are not a significant determinant of their 
current distribution. Moreover, T. torquatus is tolerant to heat 
and could potentially benefit from climate warming, absent 
effects on important species interactions or habitat structure, 
expanding its distribution to areas previously too cold for it 
to inhabit, where it could potentially displace native species 
less adapted to hotter conditions. Estimates made with inter-
quartile ranges also ranked higher than environmental tem-
perature profiles, so this range could also be informative and 
used in future studies, though our results favor the use of the 
90th quantile ranges. Future studies should be done to verify 
if the same methodological decisions apply to more thermally 
restricted species.

Laboratory measurements of body temperature produced 
better predictors of distribution than field measurements in 
general, reinforcing the importance of experiments for char-
acterizing thermal physiology. Animals might explore wider 
temperature ranges in thermal gradients than in the field, 
avoiding constraints and costs of behavioral thermoregula-
tion present in their natural habitats. We recommend future 
studies to use thermal gradients when estimating thermal 
tolerances. Likewise, aggregating temperatures from all indi-
viduals then calculating thermal tolerances generated better 
predictors of distribution than calculating thermal tolerances 
individually. Our interpretation of such results is that indi-
viduals might not be exploring their full thermal tolerance 
during thermal gradient experiments, so observing all indi-
viduals together generates a better picture of the species’ ther-
mal tolerance variability.

We could not generate informative estimates of activ-
ity time with the model of thermoregulation that we used. 
This may be due to the assumption that animals would have 
immediate access to all microhabitats available for thermo-
regulation. Laboratory experiments to elucidate how efficient 
animals are in choosing appropriate microclimates and pro-
jections of microhabitat structure and availability might help 
add realism to those models.

Precipitation ranked high in both algorithms, in agree-
ment with studies that show it is a reliable predictor of lizard 
and other ectotherm habitat suitability (Araújo et al. 2006, 
Barrows 2011, Nasrabadi et al. 2018). Tropidurus torquatus 

Table 1. Median, standard deviation (SD) of activity time estimates 
and weighted average of their importance for predicting the distri-
bution of the tropical lizard Tropidurus torquatus, grouped under 
different methodological decisions to estimate environmental tem-
peratures experienced by individuals. (1) Method for estimating the 
temperature variation which animals experienced. Sinusoid simu-
lates temperature variation as a sine wave spanning from daily maxi-
mum to minimum air temperatures. Operative uses operative 
temperature models to measure daily temperature variations in situ 
and them extrapolates time of activity measures by correlating it to 
air temperatures. Microclim uses microclimatic surfaces 
(Kearney et al. 2014) containing estimates of daily temperature vari-
ation in different microhabitats. (2) Use of thermoregulation simula-
tions on operative and microclim methods of temperature variation. 
The average between microhabitats for each temperature range is 
also included for comparison. Also included are (3) climate vari-
ables: average air temperature (Tavg), maximum air temperature (Tmax) 
and precipitation. Importance indexes were obtained from Random 
Forest (mean decrease in accuracy) and Gradient Boosting (relative 
influence) regressions of distribution against hours of activity and 
climate.

Methodological decisions Median SD Importance

(1) Temperature variation
 sinusoid 0.667 3.943 0.008
 operative 0.750 2.327 0.004
 microclim 3.465 2.569 0.009
(2) Thermoregulation
 average – T50, T90 2.250 2.748 0.014
 maximum – T50, T90 6.750 3.028 0.006
 average – T50_lwr, T90_lwr 4.153 3.058 0.007
 maximum – T50_lwr, T90_lwr 6.833 3.023 0.005
 average – Tmean, T50_lwr, 

T90_lwr

1.063 1.488 0.005

 minimum – Tmean, T50_lwr, 
T90_lwr

0.000 0.278 0.004

(3) Climate
 precipitation 121.333 20.909 0.124
 Tavg 23.063 2.150 0.007
 Tmax 28.431 2.396 0.008

Table 2. Median, standard deviation (SD) of activity time estimates 
and weighted average of their importance for predicting the distri-
bution of the tropical lizard Tropidurus torquatus, grouped under 
different methodological decisions to estimate their thermal toler-
ance. (1) Range of temperatures in which animals were considered 
active. Tmean: above average body temperature, T50_lwr: above 25th 
quantile, T50_upr: above 75th quanile, T90_lwr above 5th quantile, T90_upr 
above 95th quantile. T50: between T50_lwr and T50_upr and T90: between 
T90_lwr and T90_upr. (3) Origin of body temperatures used for range 
estimation: field or laboratory. Laboratory ranges were obtained by 
aggregating data from all individuals then calculating the range or 
by calculating the range for each individual and then averaging 
between them. Importance indexes were obtained from Random 
Forest (mean decrease in accuracy) and Gradient Boosting (relative 
influence) regressions of distribution against hours of activity and 
climate.

Methodological decisions Median SD Importance

(1) Range
 Tmean 0.917 1.761 0.006
 T50 1.625 2.348 0.010
 T90 4.083 3.640 0.008
 T50_lwr 2.917 2.722 0.004
 T90_lwr 5.722 3.676 0.014
 T50_upr 0.250 1.260 0.002
 T90_upr 0.167 0.984 0.002
(2) Origin
 laboratory-pooled 3.583 4.067 0.010
 laboratory-individual 1.417 2.150 0.005
 field 1.250 2.133 0.005
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might contract its range at more arid regions within its 
known distribution, such as the ecotone of the Cerrado with 
the semi-arid Caatinga. Modeling the processes by which 
rainfall affects ectotherm distribution is more complex than 
thermal physiology, since it might involve water-loss rates, 
species interactions, prey availability and egg survival, which 
would require data not yet widely available (but see Garcia-
Porta et al. 2019). While temperature might have complex 
effects as well, our results suggest that direct effects on the 
lizard’s physiology are predominant.

We found T. torquatus rarely experiences temperatures 
above its upper thermal tolerance range, suggesting high 
levels of warming would be required for this species to suf-
fer significant loss of habitat suitability resulting in con-
traction of its distribution. Previous work has found that 
hours of restriction in activity computed from Tmean is a 
good predictor for persistence of desert lizard populations 
in Mexico (Sinervo et al. 2010), while the same estimate 
ranked remarkably low for T. torquatus. This could be due 
to the extreme differences in the environments and ther-
mal physiology of both groups. For instance, Mexican des-
ert lizards at greater risk are in montane environments, and 
their preferred temperatures are closer to their upper ther-
mal tolerance limits (Sinervo et  al. 2010). This indicates 
that the most accurate parameterization for such models is 
likely to be very affected by species’ unique physiological 
traits, and thus researchers should be careful when gen-
eralizing conclusions from distribution models based on 
physiology to other species.

Most studies report negative effects of climate warming 
on Lepidosauria (Diele-Viegas and Rocha 2018), with some 
exceptions (Logan et al. 2015, Kubisch et al. 2016, Gilbert 

and Miles 2017) to which we now add T. torquatus. Thermal 
tolerant species might dominate reptile communities in the 
near future, given other species are expected to decline (Diele-
Viegas and Rocha 2018). Other studies found lower thermal 
tolerance to evolve quickly in tropical lizards (Logan  et  al. 
2014, Gilbert and Miles 2017), which might allow them to 
expand into colder areas if displaced from their current distri-
bution by climate warming.

Activity time alone is not the sole factor determining the 
presence of an ectotherm species (Kearney 2013), but our 
results indicate it might be a better predictor than using 
pure environmental temperatures, with no regard for their 
interaction with species physiology. It is possible to model 
mechanisms by which the environment affects physiology 
with limited information, adding important information to 
distribution modelling. Package ‘Mapinguari’ is an effort to 
increase accessibility to the techniques used here and facilitate 
their further development. We hope users of the package can 
generate biologically relevant information to provide policy 
makers with tools to mitigate the effects of climate warming 
on vulnerable species.
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