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The formation of the Amazon drainage basin has been considered an important driver
of speciation of several taxa, promoting vicariant events or reinforcement of barriers that
restrict gene flow between opposite river margins. Several recent studies reported a
set of miscellaneous events involving climatic fluctuations, geomorphological changes,
and dispersal mechanisms as propellers of diversification of Amazonian rainforest taxa.
Here, we show the results of dated phylogenetic, biogeographic, and populational
analyses to investigate which events could better explain the current distribution of a
heliothermic, active foraging lizard in the central and eastern portions of the Amazonian
rainforest (besides a disjunct distribution in part of the Atlantic Forest). We sampled
Kentropyx calcarata from most of its area of occurrence in Amazonia and used
mitochondrial and nuclear markers to evaluate if the genetic structure agrees with
evolutionary scenarios previously proposed for Amazonia. We performed phylogenetic
and populational analyses to better understand the dynamics of this species in the
Amazonia rainforest over time. Phylogenetic inference recovered ten K. calcarata
structured lineages in eastern Amazonia, some of them limited by the Amazon River and
its southern tributaries (Tapajós, Xingu, and Tocantins), although we detected occasional
haplotype sharing across some of the river banks. According to molecular dating,
K. calcarata diversified since Miocene–Pliocene, and some of the lineages presented
signs of demographic expansion during the Pleistocene, supposedly triggered by
climatic dynamics. The putative ancestral lineage of K. calcarata was distributed on
the Guiana Shield, later spreading south and southeastward by dispersion. Our results
indicate that Amazonian rivers acted as barriers to the dispersal of Kentropyx calcarata,
but they were not the sole drivers of diversification.

Keywords: Amazon basin, biogeography, drainage evolution, Kentropyx calcarata, landscape changes, lizard,
phylogenetic, population structure
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INTRODUCTION

Several phylogeographic studies tried to understand how
organisms evolved in Amazonia, testing possible evolutionary
scenarios (Moritz et al., 2000; Werneck et al., 2009; Hoorn
et al., 2010; Avila-Pires et al., 2012; Leite and Rogers, 2013;
Prates et al., 2016a; Ribas and Aleixo, 2019; Silva et al., 2019).
The general consensus is that the evolution of the present-day
Amazonian landscape was structured by geomorphological and
climatic events during the Tertiary and Quaternary, which in
turn affected biotic diversification. One of the most important
geomorphological events is the Andes uplift, which affected
landscape evolution and the river system dynamics. Sea-level
fluctuations and other tectonic activities also played a key role in
the evolution of Amazonian biodiversity (de Rossetti et al., 2005;
Rossetti and De Toledo, 2007; Hoorn et al., 2010).

Climate fluctuations also caused changes in vegetation,
although their degree, extension, and impacts on biodiversity are
still uncertain (Haffer and Prance, 2001; Bush, 2017). Proposed
evolutionary scenarios support that higher levels of precipitation
and climatic stability reigned in western Amazonia leading to
huge biodiversity in this region, while climatic instability of
eastern Amazonia could have made vegetation more susceptible
to fragmentation, leading to the possible loss of biodiversity
(Cheng et al., 2013). More recently, a synergetic role between
climate fluctuations and dynamic drainages through a variation
in sedimentary discharge has been proposed (Pupim et al., 2019),
which would have also triggered the genetic diversification of
species in eastern Amazonia (Silva et al., 2019).

Several biogeographic hypotheses have been proposed based
on climatic and geomorphological events, making predictions
that are amenable to be tested using molecular data (Moritz et al.,
2000; Antonelli et al., 2010; Leite and Rogers, 2013). The riverine
hypothesis proposes that the establishment of the Amazon
River and its major tributaries fragmented the distribution
of species, isolating populations on opposite banks, causing
lineage differentiation, and ultimately speciation (Wallace,
1852). Predictions of this hypothesis include the formation
of reciprocally monophyletic groups (i.e., sister-taxa or sister
lineages) and a strong genetic population structure with little to
no migration between opposite banks. On the other hand, this
structure may be weaker toward the river headwaters, where it
becomes easier to cross (Gascon et al., 2000; Leite and Rogers,
2013). It is also assumed that the populations separated by the
rivers remained mostly stable, with no evidence of population
expansion related to the differentiation process. Moreover, the
diversification times of the sister lineages should be in agreement
with the time the respective enclosing river was established
(Moritz et al., 2000; Leite and Rogers, 2013).

Studies with amphibians and reptiles in eastern Amazonia
have found that some large rivers (Avila-Pires et al., 2012; Dias-
Terceiro et al., 2015; Godinho and da Silva, 2018; Moraes et al.,
2020) and also smaller rivers (Souza et al., 2013; Fouquet et al.,
2015) can act as biogeographic barriers. In general, these and
other studies also emphasize the importance of considering
the biological specificities of taxa as strong determinants of
their distributions (Werneck et al., 2009; Cheng et al., 2013;

Prates et al., 2016a,b). Meanwhile, in other studies, rivers are
detected not as vicariant (primary) barriers, but as limits of
lineages previously differentiated as a result of other factors (e.g.,
ecological speciation, environmental adaptation, sexual selection,
etc.) that eventually became separated by a river (Smith et al.,
2014; Naka and Brumfield, 2018; Pirani et al., 2020). Thus, even
though the river was not the primary cause of diversification, it
could still act to restrict current gene flow (Naka and Brumfield,
2018; Pirani et al., 2020).

In this study, we assessed the relative influence of rivers
as barriers and the climatic fluctuation as drivers of genetic
diversification using a heliothermic lizard, a forest inhabitant
that searches for sunny spots within the forest and tolerates
more open types of forest (Vitt, 1991; Ávila-Pires, 1995) as
the model system. The teiid lizard Kentropyx calcarata Spix,
1825 is widespread in forested areas in Amazonia east of the
Negro and Madeira rivers, besides its disjunct occurrence in the
Atlantic Forest (Ávila-Pires, 1995; Ribeiro-Júnior and Amaral,
2016). A phylogeographic study focusing on the eastern part of its
distribution in Amazonia detected geographically cohesive clades
partially separated by some of the Amazon tributaries and the
Tocantins River (Avila-Pires et al., 2012). Moreover, Werneck
et al. (2009), on the basis of two mitochondrial genes, dated
the separation of K. calcarata and its sister species, recovered as
Kentropyx pelviceps Cope, 1868, to the Middle Miocene, while
two samples of K. calcarata, one from Guyana and the other
from Mato Grosso, Brazil, were separated since the Pliocene.
A more recent study, involving most Kentropyx species and
both mitochondrial and nuclear genes, recovered Kentropyx
altamazonica Cope, 1876 as the sister species of K. calcarata,
also dating their divergence to the Middle Miocene (Sheu et al.,
2020). This study included K. calcarata samples from both
Amazonia and Atlantic Forest, which formed two lineages that
split from each other since the late Miocene/Pliocene. It indicated
moreover that ecological niche divergence was an important
driver of diversification in the genus. However, in spite of
such studies, a better picture of how K. calcarata responded
to the geomorphological and climatic events that occurred in
Amazonia, and which events were the most important for the
species diversification, is still lacking. A better knowledge of
how widely distributed forest species evolved could help in the
prediction of future demographic dynamics and provide a basis
for conservation policies.

Here, we investigate how K. calcarata diversified in Amazonia
through an ancestral area reconstruction and a molecular
clock based on a multi-locus dataset. Distribution patterns and
historical demographic dynamics of the lineages recovered were
also examined. The recognition and arrangement of clades and
their diversification times will give us clues about the processes
involved in the species’ phylogeographic history. Reciprocally,
monophyletic sister populations distributed on opposite river
banks, with coincident times between clade splits and the arising
of rivers, would be an indication that these rivers acted as
drivers of populational diversification in K. calcarata. On the
other hand, splits that occurred during the Pleistocene could
be more correlated with forest fragmentation. In addition, the
dated demographic analyses may provide clues of bottleneck
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or population expansion, in agreement with the hypothesis of
forest fragmentation by climatic events, if occurred since the end
of the Quaternary.

MATERIALS AND METHODS

Sampling and Molecular Data
We used tissue samples (tail, muscle, or liver) from 286 Kentropyx
calcarata specimens [63 sequences of the mitochondrial genes
were obtained from GenBank, from Avila-Pires et al. (2012)],
and a total of 12 samples of Kentropyx striata (Daudin, 1802),
K. pelviceps, and K. altamazonica were used as outgroups.
Samples were obtained through fieldwork and tissue loans from
scientific collections, covering most of the wide distribution of
the species in Amazonia (Supplementary Table 1).

To extract genomic DNA, we used the phenol–chloroform
method, following the protocol suggested by Sambrook and
Russell (2001), and to maximize the extraction of genomic DNA
from small tissue samples, we used the DNeasy Blood and Tissue
kit (QIAGEN). Four genes, two being mitochondrial (mtDNA),
namely cytochrome b (CYTB) and 16S (Palumbi et al., 1991;
Corl et al., 2010), and two nuclear (nuDNA), namely dynein,
justaxonemal, heavy chain 3 (DNAH3) and synuclein, alpha
interacting protein (SINCAIP; Townsend et al., 2008), were
amplified by polymerase chain reaction (PCR), purified with PEG
8000, and sequenced using Big Dye Terminator kit (Perkin-Elmer
Corp., Norwalk, CT, United States). Primers and polymerase
chain reaction are detailed in Supplementary Table 2.

Sequences were edited in BioEdit v.7 (Hall, 1999) and
aligned using the Multiple Alignment algorithm in Fast Fourier
Transform (MAFFT; Katoh and Standley, 2013). We identified
the gametic allele’s phase of the heterozygous individuals
using a Bayesian approach as implemented in PHASE with a
threshold of 90% of posterior probability (Stephens et al., 2001;
Stephens and Donnelly, 2003).

Gene Tree Estimates
Sequences were concatenated in the Sequence Matrix software
(Vaidya et al., 2011), and samples that failed to amplify
for some genes were filled as missing data. We inferred
phylogenetic relationships with Bayesian Inference using four
independent runs of Markovian chains with 10 million
generations and sampling trees every 1,000 generations in
MrBayes v.3.1 (Ronquist and Huelsenbeck, 2003). To explain
variation in gene sequences, we searched the best-fit partitioning
scheme for the data set and the best-fit model of molecular
evolution for each subset through Partition Finder (Lanfear
et al., 2012). We used Tracer v.1.5 (Rambaut et al., 2018)
to evaluate the convergence of sampling parameters and to
discard trees sampled before the stability of the log-likelihood
values in the Markov chain (first 25% of the trees obtained),
as recommended by Huelsenbeck and Hall (2001). Samples
remaining after burn-in were used to estimate the values of
posterior probability (pp), the length of branches, and tree
topology. Relations with posterior probabilities ≥90% were
considered well supported.

We also performed a maximum likelihood analysis with
RAxML-HPC2 program on XSEDE (Miller et al., 2010). The best
ML tree was obtained from a heuristic search among 100 trees
and branch support with 1,000 bootstrap replicates. Branches
with bootstrap (bs) values≥70% were considered well supported,
following Hillis and Bull (1993).

Population Structure, Networks, Genetic
Polymorphism, and Distances
We investigated the level of populational genetic structure based
on a Bayesian clustering analysis inferred with BAPS v.6.0
(Corander et al., 2008). This analysis was performed from a
matrix of combined sequences of two mitochondrial markers
(16S and CYTB), with a total of 271 samples chosen to encompass
those preferentially amplified for both mitochondrial genes and
including all the groups recovered in the Bayesian tree. In some
samples (HT78_F, HT80_F, HT114_F, HT706_F BPN1887_A,
BPN2885_A, BPN2946_A, BPN3796_J, and AMS355_B) data on
CYTB were missing. We used a linkage map to indicate the limits
of base pairs of each marker. A genetic mixture analysis was
performed with 10 runs for each K (number of discrete genetic
clusters) that ranged from 1 to 11 (a number slightly above the
number of major clades recovered by phylogenetic analyses).
After finding the optimal K value, an admixture analysis was
performed with 100 interactions and a minimum of 5 individuals
per population (according to the mixture results). The reference
number for each population and the interactions of reference
individuals used were, respectively, 200 and 10, following the
default values of the software.

We used Haploviewer v.4.1 to determine the number of
unique haplotypes and to obtain haplotype networks and the
distribution of shared haplotypes based on the maximum
likelihood tree (Barrett et al., 2005). We calculated mean pairwise
p-distances (Nei, 1987) within and between the recovered
populations using mtDNA, concatenated mtDNA, and nuDNA
datasets in MEGA 6.0 (Tamura et al., 2013).

We calculated DNA polymorphism metrics (i.e., the number
of polymorphic sites, number of haplotypes, nucleotide, and
haplotype diversity) for the concatenated mtDNA and separately
for each nuclear marker dataset with DnaSP v.5 (Librado
and Rozas, 2009). Metrics were calculated only for population
clusters with a minimum of six samples. Using Arlequin v.3.1
(Excoffier et al., 2005) and the concatenated mtDNA dataset,
we calculated fixation indexes (Fst), the Tajima’s D (Tajima,
1996), and Fu’s Fs (Fu, 1996) values for each group with 1,000
permutations. A three-level hierarchical analysis of molecular
variance (AMOVA) was performed using Arlequin v.3.1 to assess
genetic diversity among and within the inferred populations,
grouped according to the gene tree (Figure 1). We also performed
this analysis using mtDNA and partitioning groups by the major
rivers aiming to test the riverine hypothesis. The populations
were grouped according to seven interfluve regions, four of them
located south of the Amazon River, following the Rondônia,
Tapajós, Xingu, and Belém Areas of Endemism; and the
remaining three groups are located north of the Amazon River,
with samples from west of Essequibo and Trombetas Rivers,
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Trombetas-Jari interfluve (including samples from Suriname),
and east of Jari River (including samples from French Guiana;
see map in Figure 1).

Species Tree, Divergence Times, and
Biogeographic Reconstruction
To estimate divergence times between the main K. calcarata
lineages and relate them to the events proposed by the hypotheses
of diversification, we estimated a species tree with ∗BEAST
v.1.8.0 (Drummond et al., 2007). For this analysis, we treated
each lineage recovered with high support in Bayesian inference
(concatenated gene tree, see above) like a distinct species’
lineage. We used 277 samples, after having excluded those with
missing data for the CYTB gene, and we did not include the
SINCAIP gene, in which samples from the J group were not
recovered. To calibrate the divergence time estimates, we used
the calibration rate of 0.65% change per lineage per million years
for mitochondrial markers estimated by Macey et al. (1998) and
widely used in squamate reptiles (Glor et al., 2001; Weisrock et al.,
2001; Strasburg et al., 2007; Oliver et al., 2009; Torres-Carvajal
and de Queiroz, 2009; Gvoždík et al., 2010; Avila-Pires et al., 2012;
Pouyani et al., 2012). The rate of the nuclear gene was estimated
by the BEAST software relative to the mtDNA rate. We used
a coalescent constant size prior and an uncorrelated lognormal
relaxed molecular clock, which accommodates the possibility of
independent rates of molecular evolution in different branches
(Drummond et al., 2007). Analyses were performed with two
independent runs for 100 million generations each by sampling
trees every 10,000 generations. We checked the ESS values and
the convergence of independent runs in Tracer v.1.5 (Rambaut
et al., 2018). The mean ages of the nodes were calculated using
a burn-in of 2,500. Trees were summarized in a maximum
credibility clade (MCC) tree after a burn-in of 10% using
the program Tree Annotator and visualized with FigTree 1.4.0
(Drummond and Rambaut, 2007).

We used a probabilistic historical biogeography approach to
model ancestral areas in BioGeoBEARS (Matzke, 2013a,b) based
on the species tree estimated. We considered five areas recognized
as Amazonian areas of endemism–AoEs (Silva et al., 2002), and
covering the distribution of Kentropyx calcarata lineages we
sampled: Guiana (GU), Belém (BE), Xingu (XI), Tapajós (TA),
and Rondônia (RO; Figures 1, 4). We considered all points
east of the Tocantins–Araguaia rivers system and Marajó Island
as part of the Belém AoE. We did not take into account the
presence of single individuals marginally present in an area
contiguous to the main area of occurrence of a lineage, e.g.,
the occurrence of one individual from G and C populations
(see section “Results”) in the Xingu AoE, one individual from
E populations in the Tapajós, and two in the Guiana AoE.
However, we considered the presence of individuals from B
group at the Guiana and Xingu AoEs because of its dense
occurrence in both areas. We assumed five as the maximum
number of ancestral areas and compared, based on likelihoods,
the six biogeographic models allowed in BioGeoBEARS: DEC
(Dispersal-Extinction Cladogenesis Model), DIVA (Dispersal-
Vicariance Analysis), BAYAREA (Bayesian inference of historical

biogeography for discrete areas), plus the same models with the
“J” (jump dispersal) parameter that comprises jump dispersals:
DEC + J, DIVA + J, and BAYAREA + J (Ree et al., 2005; Ree
and Smith, 2008; Matzke, 2013a, 2014). However, given that the
population distribution ranges are non-insular-like and to avoid
bias in the analysis [as reported in Ree and Sanmartín (2018)], we
considered the best fit model without the “J” parameter.

Historical Demography
The demographic history of each population cluster inferred
was investigated using the coalescent multi-locus method in
Extended Bayesian Skyline Plots (EBSP), which incorporates
stochastic differences in the genealogy of genes, estimating
changes in population size over time (Drummond, 2005; Heled
and Drummond, 2008). We considered separate substitution
models for each partition. The number of generations required
for the convergence of sampling parameters was 100 million,
sampling trees every 10,000 generations. We followed the same
calibration scheme as in the species tree analysis.

RESULTS

Phylogenetic and Population Analyses
The resulting dataset included 2,547 base pairs (bp)
(16S = 526 bp, 281 samples; CYTB = 782 bp, 284 samples;
DNAH3 = 734 bp, 246 samples; SINCAIP = 505 bp, 197
samples). As expected, the two nuclear markers are less variable
than the two mitochondrial markers, and CYTB is the most
variable marker (highest number of polymorphic sites – K)
(Supplementary Table 3). The best-fit partitioning scheme was
obtained by codon to CYTB and by gene to the other markers.
The best-fit evolutionary models were GTR + I + G to 16S and
CYTB codon 1; K80 + I + G for DNAH3; HKY + I + G to
CYTB codon 2 and SINCAIP; and TrN+ G to CYTB codon 3.

Phylogenetic trees resulting from Bayesian and maximum
likelihood inferences recovered the same lineages (Figure 1 and
Supplementary Figure 1) with high posterior probability and
bootstrap supports (except in E and H lineages). Both analyses
divided K. calcarata into three main clades: J, A–F, and G–I, with
clade J, from the northwestern boundary of the Guiana AoE, as
sister to the other two (with good support by both methods).
The A–F clade, also well supported, grouped all individuals north
of the Amazon, and those south of the Amazon and east of the
Xingu River. Within this clade, F was recovered with high support
as sister to all other lineages (clades A–E), while the relationships
between C, D, and E were poorly supported (Figure 1 and
Supplementary Figure 1). Clades G–I, which grouped samples
from Rondônia and Tapajós AoEs, were well supported only
by the Bayesian analysis. The population structure analysis
estimated nine population clusters within K. calcarata (Figure 2).
Genetic population results agree with the recovered lineages on
the phylogenetic tree (Figure 1), except for “F,” not recovered
as an independent population, because of the high level of
admixture in the samples.

The Amazon River and its tributaries Tapajós, Xingu, and
Tocantins largely limit some of these populations, but we
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FIGURE 1 | Geographic distribution of Kentropyx calcarata sampled locations used in this study and the concatenated phylogenetic tree (Bayesian inference). Inset
with South America map indicates the area shown in the larger map. The dashed line indicates the approximate location of the Gurupá Arch. The black arrow shows
the Xingu Great Bend region. Each area of endemism (AoE) is defined by highlighted areas on the map (Guiana AoE is only partially delimited, taking into account the
western distribution limit of K. calcarata samples). Circle colors correspond to the clade colors assigned in the phylogenetic tree. Posterior probability-pp (up) and
bootstrap-bs (down) values are represented according to the legend in the figure. Bootstrap supports within the main clades were not represented, since the
topology of the likelihood tree in these branches differed from the Bayesian tree. External groups correspond to Kentropyx striata (Ks), K. altamazonica (Ka), and
K. pelviceps (Kp).

detected few shared haplotypes on both margins of the Araguaia–
Tocantins (C), Xingu (E, G), and Amazon (B, E) (Figure 1).
In addition, we also found distinct and well-supported lineages
without any apparent barrier separating them, for example,
within the Guiana and Rondônia AoEs (Figure 1).

Mitochondrial haplotype networks show correspondence
with the phylogenetic inference (Figure 3). CYTB haplotypes
(Figure 3B) are separated by more mutational steps than 16S
(Figure 3A) and nuDNA (Figures 3C,D), and they form the
only network with no shared haplotypes between groups. Both
in CYTB and 16S networks, most haplogroups present a radial
pattern. In the case of the two nuDNA, most haplotypes are
shared between groups, with hardly any geographic structure
observed (Figures 3C,D). A high number of mutational steps in
one sample of the H lineage in the CYTB haplotype network were
caused by missing data (Figure 3B).

Our results showed, in average, low values (0.001–0.006) of
genetic distances within lineages (Supplementary Table 4). The
largest genetic distances were within D, G, and H lineages,
the lowest within the F lineage. In relation to the distances
among groups, we recovered high values between lineages
from opposite margins of the Amazon River, ranging from
0.022 (comparing F and H) to 0.058 (J and G). However,
lineage J (the most divergent lineage in relation to all others),
from the north of Amazon River, showed the largest genetic
distances in relation to others from the same margin, such
as B (the geographically closest lineage, 0.060) and D (eastern
Guiana, 0.059). The smallest genetic distances were recovered
within clades A–F from Guiana, Xingu, and Belém AoEs
(Supplementary Table 4).

Similarly, AMOVA revealed a larger molecular variance
between populations than within them for mtDNA and DNAH3
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FIGURE 2 | Barplots resulting from populational structure analysis performed on BAPS, based on concatenated mtDNA. Bar colors correspond to the color groups
recovered in Figure 1 (upper = clade AB; middle = clade CDE; lower = J + clade GHI + F).

markers. SINCAIP, in contrast, showed more variation within
groups than between groups (Table 1). The total fixation index
(Fst) was the highest for the concatenated mitochondrial genes
(Fst = 0.83787) (Supplementary Table 5). The AMOVA was
performed to evaluate the riverine hypothesis, and it showed
higher mtDNA variation levels among populations from different
interfluves (Rondônia, Tapajós, Xingu, Belém, west of Essequibo
and Trombetas Rivers, Trombetas-Jari interfluve, and east of Jari
River) than from within interfluves (Table 1).

Population E (restricted to Xingu AoE) showed the highest
haplotype diversity for mtDNA and population H (restricted
to Rondônia AoE) the highest nucleotide diversity (Table 2).
Fst indexes were significant (p ≤ 0.05) for all populations.
The strongest genetic structure was detected when comparing
population J from northwest of the Guiana AoE with other
groups (Supplementary Table 5).

Species Tree, Divergence Times, and
Biogeographic Reconstruction
According to the inferred species tree (Figure 4), K. calcarata
divergence started during Early–Middle Miocene (or even in
Late Oligocene) with the initial separation of lineage J from
NW Guiana, which is sister to all others. The remaining clades
diverged into clades (A–F) and (G–I) in Middle–Late Miocene.
Splitting within (G–I) and between F and the remaining lineages
in this clade occurred during Pliocene, while these latter lineages
diverged more recently, in the Plio-Pleistocene (see confidence
intervals in Supplementary Table 6).

The best model recovered by BioGeoBEARS was DIVALIKE
(lnL = −22.06, AIC 48.13) (Table 3). The reconstruction based
on the best-fit model is represented in Figure 4. According to
the ancestral reconstruction obtained by this model, the Guiana
AoE was considered the most probable ancestral range for
K. calcarata, with the populations south of the Amazon River
in Rondônia + Tapajós, Xingu, and Belém AoEs all originating
subsequently by dispersion events from Guiana.

We detected signs of population expansion for
populations/lineages distributed in eastern Amazonia—A,
C, E (mtDNA), and I (DNAH3) by Tajima’s test and for all
populations, except D and J by Fu’s statistic (mostly mtDNA
and/or DNAH3, but only SINCAIP in H; Table 2). The EBSP
analyses are partly in agreement with those of neutrality
deviations. The C (Belém AoE) and E (Xingu AoE) groups
showed signals of a rapid and recent expansion between 0
and 1 Ma (Figure 5). According to this analysis, the other
populations did not show significant changes in demography
over time, taking into account the wide ranges of confidence in
the graphs (Figure 5).

DISCUSSION

Our findings indicate that some of the main Amazonian
rivers likely act as diversification barriers among K. calcarata
populations. The intraspecific structure showed at least nine
K. calcarata lineages in Amazonia, and the phylogenetic analyses
recovered ten lineages, which are supported by high Fst
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FIGURE 3 | Haplotype networks built for the four markers used in the study: (A) 16S; (B) CYTB; (C) DNAH3; (D) SINCAIP. Not all groups were completely sampled
in haplotype networks, due to PCR failure. Colors correspond to same scheme of Figures 1, 2. Circle sizes are proportional to the number of individuals of each
haplotype. Intermediate points (smallest circles) refer to the number of mutational steps between populations. To facilitate visualization the total number of mutations
was indicated in some segments.

indexes and genetic distances (Supplementary Tables 4, 5).
Four populations (A, D, F, J) are restricted to the north and
other four (C, G, H, I) to the south of the Amazon River
(Figure 1). The Tapajós River separates populations G (east
margin) from H and I (west margin), the Xingu River separates
almost completely populations E and G, and the Tocantins–
Araguaia populations C and E (Figure 1). These rivers reduce
gene flow and prevent homogenization, although occasionally
this barrier effect is incomplete. For example, we observed
putative occasional dispersions in some groups (B, C, E, and
G) across the Amazon (B and E), Tocantins–Araguaia (C), and
Xingu (G and E) rivers (Figures 1, 4). Considering sister groups,
the Tapajós River separates G (east margin) and H (Figure 1 and
Supplementary Figure 1) or H+ I (west margin) (Figure 4), and
the Amazon River separates, completely or partially, some larger
sister clades. These are the cases where the river itself may have
acted (depending also on the time scale, discussed below) as a

primary barrier, leading to the observed population divergence.
On the other hand, strong genetic differences detected in some
parapatric K. calcarata populations within Guiana and Rondônia
AoEs (Supplementary Tables 4, 5 and Figure 1) indicate that the
riverine barriers cannot exclusively account for the diversification
pattern in these interfluvial areas.

Diversification of K. calcarata and
Implications for Eastern Amazonian
Evolution
Overall, our results support older divergence times
(Supplementary Table 6) than previously found in genus-
level phylogenetic studies including K. calcarata sampling
(Werneck et al., 2009; Sheu et al., 2020). Differences in sampling
density and markers used possibly contributed to these time
dissonances. The average splitting time in Sheu et al. (2020)
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FIGURE 4 | Species tree based on markers CYTB, 16S, and SINCAIP using *BEAST and biogeographic reconstruction inferred using BioGeoBEARS for Kentropyx
calcarata. We consider five areas: GU–Guiana (dark blue), BE–Belém (light blue), XI–Xingu (green), TA–Tapajós (yellow), and RO–Rondônia (red). The resulting best-fit
model for our phylogeny was DIVALIKE (lnL = –22.06, AIC = 48.13). Clades correspond to populations/lineages defined by phylogeographic analysis. The numbers
in the nodes correspond to the values of posterior probability (pp). Color of each group correspond to those of Figures 1, 2. Time scale represents millions of years.

between K. calcarata, K. pelviceps, and K. altamazonica occurred
more recently (late Miocene) than our findings for the most
ancient Amazonian K. calcarata population (J) in the early
Miocene (Figure 4). However, the wide confidence intervals in
the species tree (Figure 4) could be hiding a more recent average
splitting time for J population. Alternatively, the recent average
time of splits among the species of the calcarata group could be
overestimated by the confidence intervals of the species tree in
Sheu et al. (2020), and, in this way, the splitting time between
K. calcarata and their sisters actually would be more ancient.
This hypothesis supports the Guiana group J origin during the
middle Miocene and the splits in A–F and G–I clades during
the late Miocene. In addition, the large divergence in J lineage

(Supplementary Tables 4, 5) encourages further investigations,
using integrative data of morphology and analyses of species
delimitation, to access the possibility of this Guianan population
being under a speciation process.

According to our results and previous studies, an ancestral
origin of K. calcarata in the Guiana AoE by Early–Middle
Miocene is estimated, with the first intraspecific divergence
(between the population from northwestern Guiana AoE, here
represented by the green group–J, and all others) occurring
by Middle Miocene (Figure 4). During the Miocene, recurrent
tectonic activities caused marine incursions, trigged Andes uplift
phases, caused the formation and subsidence of geological
arches and formation of lacustrine and swampy environments
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TABLE 1 | Summary statistics of molecular variance (AMOVA) comparing variation
among and within phylogenetic clades/populations and comparing variation
among and within different interfluve populations.

Variation source Among populations Within populations

mtDNA (Fst = 0.83787)

df 9 261

Var. comp. 15.27008 Va 2.95490 Vb

Var. % 83.79% 16.21%

Interfluve groups (Fst = 0.60339)

df 7 278

Var. comp. 8.64814 Va 5.68446 Vb

Var. % 60.34% 39.66%

DNAH3 (Fst = 0.24522)

df 9 482

Var. comp. 0.50047 Va 1.54046 Vb

Var. % 24.52% 7.48%

SINCAIP (Fst = 0.07732)

df 9 334

Var. comp. 0.14014 Va 1.67236 Vb

Var. % 7.73% 92.27%

Calculations were made based on the concatenated mtDNA and, separately,
for each nuclear marker. df, degree of freedom; Var. comp., Variation of the
components; Var. %, percentage change; Fst, total fixation index.

(Hoorn et al., 1995, 2010; Caputo and Soares, 2016). An episode
of tepuis uplifting, whose eastern border is close to the current
area of occurrence of the J lineage, is also believed to have
occurred during the Late Tertiary (see Kok, 2013). However, there
is no sufficiently detailed information on the geomorphological
history of this area to develop further the possibility that this
historical event was casual for the divergence of lineage J. Further
studies addressing species limits under integrative approaches are
advised to address the possibility of this lineage being under an
incipient speciation process.

The second division within K. calcarata separated the A–
F and G–I clades during the Late Miocene (Figure 4 and
Supplementary Table 6). The topology, timing, and geographic
distribution of these lineages is in agreement with the possibility
that it was induced by geomorphological events related to the
reversal and establishment of the Amazon River’s present course
(Figueiredo et al., 2009; Hoorn et al., 2010; Caputo and Soares,
2016; Bicudo et al., 2019, Bicudo et al., 2020). Considering
the biogeographic scenario reconstructed, probably at that time
K. calcarata had a range limited to the western part of its present
Guiana distribution. It might have happened as well that its
southern limit was such that part of it became “trapped” south
of the new course of the Amazon, in the area now recognized
as the Rondônia AoE. In this scenario, the Amazon River would
have acted as a primary barrier between former continuous
populations in the western part of the current distribution of this
species in Amazonia.

South of the Amazon River, the species would have spread
south and east across the Tapajós River, leading to the formation
of lineages (G–I) still during the Late Miocene (Figure 4
and Supplementary Table 6). It is possible therefore that the
Tapajós River has acted as an effective barrier between one

or both populations to the west (H, I) and the east (G).
The Tapajós River limits the distribution of several species of
squamates and amphibians (Moraes et al., 2016, 2020). On the
other hand, the mouth of the Tapajós River is comprised of
a set of geological faults dating to the Pleistocene-Holocene,
that form multiple channels incorporated in the present river
configuration, at its lower course (Costa et al., 2001). This could
have facilitated occasional gene flow between populations from
opposite margins, what would explain the uncertain phylogenetic
arrangements among lineages from Rondônia and Tapajós AoEs
in the gene and species trees (GH-I and G-HI, in respectively,
Figures 2, 4).

West of the Tapajós River, two partially overlapping
K. calcarata lineages are present within the Rondônia AoE (H
and I) in the absence of apparent geographic barriers (Figure 1).
Our dataset is insufficient to suggest monophyly between the
two populations of this region or to suggest any hypothesis
about the cause of this split. However, signs of population
expansion were detected at the Rondônia AoE in lineage H by the
nuclear gene SINCAIP (not included in the species tree), the less
variable marker, and in the lineage I by the other nuclear gene,
DNAH3, which could be linked to the process that led to their
divergence and possible secondary contact within Rondônia AoE.
This pattern reinforces the complexity of this region, which is
considered heterogeneous according to the distribution of other
organisms (Geurgas and Rodrigues, 2010; Wilkinson et al., 2010;
Fernandes et al., 2013; Souza et al., 2013; Thom and Aleixo,
2015). Local factors acting within interfluves and AoEs, such as
local adaptation to ecological selective forces, could also help
explain the occurrence of distinct lineages at Rondônia AoE in
the absence of apparent geographic barriers (Ortiz et al., 2018).
Additional sampling and studies about ecological adaptation and
secondary contact are needed to further access this possibility.

The A–F clades occupied originally only the Guiana AoE,
where the initial splits within K. calcarata occurred (Figures 1, 4
and Supplementary Figure 1). The westernmost lineage (F) from
north of the Amazon River diversified from the other Guianan
populations by the Late Miocene (Figure 4 and Supplementary
Table 6), possibly due to landscape adjustments following the
onset of the transcontinental Amazon River. Later, during
the Plio-Pleistocene, other Guianan K. calcarata populations
(A, B, D) were established. Costa et al. (2001) analyzed the
geological faults present along the Amazon River in different
periods, including the Late Tertiary and Quaternary, and their
influence on the landscape. They recognized both the existence
of different domains along the Amazon Basin, as well as temporal
variation. Together with surface topographic rearrangements,
mantle dynamics were also the key for the formation of the
present Amazon River drainage system (Bicudo et al., 2019,
Bicudo et al., 2020). These landscape dynamics could have led
to the splitting of some populations north of Amazon River,
promoting vicariant events and eventually allowing eastward
dispersal that could have been congruent with the inferred
eastward expansion of terra firme forests and várzeas (Bicudo
et al., 2019). On the other hand, these populations are currently
distributed without evident or strong physical barriers separating
them, and they might as well have been influenced by changes
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TABLE 2 | Genetic parameters calculated for K. calcarata populations.

Pop Markers n h Hd ± SD π ± SD k Tajima’s test Fu’s statistic

A MtDNA 67 7 0.369 ± 0.074 0.00114 ± 0.00026 0.583 −2.09059 −16.26554

DNAH3 116 13 0.680 ± 0.044 0.00287 ± 0.00022 2.083 0.34421 −22.29128

SINCAIP 94 3 0.516 ± 0.013 0.00504 ± 0.00008 2.526 3.40939 2.19301

B MtDNA 34 6 0.371 ± 0.104 0.00091 ± 0.00030 0.463 −1.67324 −15.60090

DNAH3 72 21 0.888 ± 0.023 0.00381 ± 0.00029 2.773 0.43808 −24.05887

SINCAIP 48 8 0.770 ± 0.034 0.00632 ± 0.00025 3.161 1.26068 −2.13948

C MtDNA 30 20 0.954 ± 0.026 0.00334 ± 0.00048 4.301 −2.15110 −23.26940

DNAH3 56 13 0.642 ± 0.071 0.00220 ± 0.00042 1.612 −1.46253 −8.10133

SINCAIP 44 7 0.847 ± 0.022 0.00760 ± 0.00035 3.839 1.54455 2.71988

D MtDNA 23 17 0.964 ± 0.026 0.00538 ± 0.00039 6.941 −0.37746 −4.80315

DNAH3 22 12 0.887 ± 0.048 0.00492 ± 0.00062 3.606 −0.21827 −3.67346

SINCAIP 18 2 0.529 ± 0.040 0.00526 ± 0.00040 2.647 2.59848 2.49297

E MtDNA 32 24 0.980 ± 0.013 0.00326 ± 0.00039 4.107 −2.00913 −24.41310

DNAH3 60 13 0.812 ± 0.039 0.00424 ± 0.00017 3.099 1.08572 −8.44958

SINCAIP 44 10 0.811 ± 0.036 0.00724 ± 0.00042 3.654 1.72645 0.18862

F MtDNA 6 2 0.333 ± 0.215 0.00064 ± 0.00042 0.333 −0.93302 −4.26004

DNAH3 12 7 0.833 ± 0.100 0.00368 ± 0.00080 2.697 0.07214 −1.66135

G MtDNA 33 18 0.934 ± 0.024 0.00741 ± 0.00064 9.513 −0.72676 −1.95804

DNAH3 64 27 0.906 ± 0.024 0.00574 ± 0.00025 4.199 1.68864 −17.53535

SINCAIP 50 4 0.629 ± 0.038 0.00560 ± 0.00022 2.813 1.22660 0.20952

H MtDNA 9 4 0.806 ± 0.089 0.00824 ± 0.00180 9 1.40908 0.0625

DNAH3 18 3 0.392 ± 0.133 0.00078 ± 0.00028 0.575 −0.02647 −0.02696

SINCAIP 14 6 0.813 ± 0.074 0.00668 ± 0.00064 3.341 1.91021 −10.37380

I MtDNA 31 19 0.946 ± 0.025 0.00379 ± 0.00034 4.869 0.82389 −14.79771

DNAH3 60 4 0.129 ± 0.059 0.00018 ± 0.00008 0.132 −1.57650 −3.92151

SINCAIP 52 6 0.645 ± 0.041 0.00571 ± 0.00023 2.849 1.19643 −3.38506

J MtDNA 6 2 0.600 ± 0.129 0.00232 ± 0.00050 1.2 1.75324 3.30973

DNAH3 12 5 0.742 ± 0.116 0.00341 ± 0.00104 2.500 −0.6541 0.3164

Bold numbers represent significant statistical values. Metrics for SINCAIP of F and J populations are missing due to the small number of sequences available. Pop,
populations; n, sample size; h, number of haplotypes; Hd ± SD, haplotype diversity ± standard deviation; π ± SD, nucleotide diversity ± standard deviation; k, number
of polymorphic sites; Tajima’s test and Fu’s statistic, neutral deviation tests.

TABLE 3 | Results of BioGeoBEARS analysis for each model.

Model lnL Parameters d e j AIC AIC_wt

DEC + J −17.43 3 0.0038 1.00E-12 0.17 40.86 0.5

DIVALIKE + J −17.77 3 0.0052 1.00E-12 0.13 41.55 0.35

BAYAREALIKE + J −18.75 3 0.0036 1.00E-07 0.13 43.5 0.13

DIVALIKE −22.06 2 0.02 1.00E-12 0 48.13 0.013

DEC −24.02 2 0.027 0.028 0 52.04 0.0019

BAYAREALIKE −26.43 2 0.044 0.11 0 56.85 0.0002

lnL, Log-Likelihood; d, values of dispersal; e, extinction; j, founder; AIC, Akaike Information Criterion; AIC_wt, Akaike weight. Bold values highlight the best-fit model
inferred by BioGeoBEARS.

due to climatic fluctuations (glacial and interglacial periods)
during the Plio-Pleistocene, e.g., in the vegetation and river
characteristics, in a way that they would act as temporary barriers.

Two populations (B and C) reach the southern margin of
the Amazon River in the Xingu and Belém AoE, respectively
(Figure 1). According to our biogeographic reconstruction, these
lineages would have crossed the Amazon River probably by
dispersal (Figure 4) during Plio-Pleistocene. Even though the
Amazon River seems to be a difficult barrier to overcome, other
lizard species apparently crossed the river close to its mouth (e.g.,

Arthrosaura kockii and Tretioscincus agilis; Ávila-Pires, 1995), the
same as with other organisms. For example, Ayres and Clutton-
Brock (1992) showed that in primates, the similarity of species
composition between margins increases toward the mouth of the
Amazon. This is an area dense with islands that was certainly
affected by sea-level changes during the Pleistocene (Miller et al.,
2011), which may have facilitated biotic dispersal during times
of low sea level. Moreover, Marajó Island, at the mouth of
the Amazon, is a result of tectonic movements that occurred
during the Pleistocene/Holocene (Rossetti and Valeriano, 2007),
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FIGURE 5 | Demographic history estimated by Extended Bayesian Skyline Plots based on mtDNA (CYTB and 16S), and nuDNA (DNAH3 and SINCAIP) for inferred
Amazonian populations/lineages of Kentropyx calcarata. Dashed lines represent median values. The gray area corresponds to 95% confidence intervals. X-axis
corresponds to time in millions of years before the present, and Y axis represents effective population size scales.

showing that this area was still geologically active in recent times.
These movements may have separated previously continuous
populations or even facilitated passive dispersal, as for example,
in E population. Finally, in lineages B and E there are signs
of recent (approximately 0.4 Mya) population expansion, which
could have been related to the ecotonal character of the region
and the expansion of the forest toward the Caatinga and Cerrado
during interglacial periods (Batalha-Filho et al., 2013).

Occasional haplotype sharing across the Xingu River was also
detected near the area of the Xingu Great Bend (black arrow
in Figure 1). This is a segment where the river makes a sharp
U-bend to the east, suggesting that in some time of its history it
ran straight northward, later being displaced (Sawakuchi et al.,
2015). If this is true, it may have allowed the passive migration
from the right (east) margin to the left (west) margin (but not

in the opposite direction). Moreover, this is a rocky area, and
some rocks become apparent during drier periods of the year. In
extremely dry years, it may have allowed an occasional crossing
of animals through temporary land bridges.

In our reconstruction, we considered the time of the
establishment of the Amazon River system proposed by Hoorn
et al. (1995, 2010), Figueiredo et al. (2009), Caputo and
Soares (2016), and Albert et al. (2018). Other authors (e.g.,
Latrubesse et al., 2010; Rossetti et al., 2015) postulate that
the Amazon River reversal occurred more recently. If this
is correct, our scenarios would have to be reconsidered. In
general, we consider that our data, especially those of the
initial splitting of the species, seem to be more congruent
with the older dates for the formation of the present
Amazon River system.
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The ten lineages of K. calcarata recovered in this study
were mainly restricted to the major interfluves in eastern
Amazonia. Despite the rivers acting as maintainers (and some
of them as sources) of population diversity, we also reinforce
the effects of climate change during the Quaternary as an
actual driver of K. calcarata diversification. During this period,
when more humid forests probably alternated with a mosaic
of humid and dry forests, respectively, in interglacial and
glacial periods, we detected expansions, mainly in easternmost
populations (from Xingu and Belém AoEs) (Figure 5). Climatic
fluctuations would have propelled populational expansions and
the rivers of the Brazilian Shield then sealed the diversification
processes by forming strong secondary barriers in the most
downstream regions.

This study represents a substantial effort to evaluate the
phylogeography of K. calcarata, encompassing a broader
geographical sampling in a number of individuals and of markers
than any study previously performed with this species. We hope
that it also helps to define protection measures for the species,
considering that some of its populations were recently detected
to be vulnerable to the effects of the ongoing global warming,
particularly in eastern Amazonia (Pontes-da-Silva et al., 2018).
As the next steps, we suggest testing more deeply (using genomic
markers, for example) the different geographic scenarios in
eastern Amazonia to better understand the gene flow and the
magnitude of climatic and geological events in the diversification
of Amazonian lineages of K. calcarata; and to incorporate samples
from the Atlantic Forest to understand the evolutionary history of
this species as a whole.
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