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Abstract

Many studies propose that Quaternary climatic cycles contracted and/or expanded

the ranges of species and biomes. Strong expansion–contraction dynamics of biomes

presume concerted demographic changes of associated fauna. The analysis of tempo-

ral concordance of demographic changes can be used to test the influence of Qua-

ternary climate on diversification processes. Hierarchical approximate Bayesian

computation (hABC) is a powerful and flexible approach that models genetic data

from multiple species, and can be used to estimate the temporal concordance of

demographic processes. Using available single-locus data, we can now perform large-

scale analyses, both in terms of number of species and geographic scope. Here, we

first compared the power of four alternative hABC models for a collection of single-

locus data. We found that the model incorporating an a priori hypothesis about the

timing of simultaneous demographic change had the best performance. Second, we

applied the hABC models to a data set of seven squamate and four amphibian spe-

cies occurring in the Seasonally Dry Tropical Forests (Caatinga) in northeastern Brazil,

which, according to paleoclimatic evidence, experienced an increase in aridity during

the Pleistocene. If this increase was important for the diversification of associated
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xeric-adapted species, simultaneous population expansions should be evident at the

community level. We found a strong signal of synchronous population expansion in

the Late Pleistocene, supporting the increase of the Caatinga during this time. This

expansion likely enhanced the formation of communities adapted to high aridity and

seasonality and caused regional extirpation of taxa adapted to wet forest.
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1 | INTRODUCTION

The extraordinary species diversity in tropical biomes has been

explained by higher speciation rates, lower extinction rates, larger

area, higher stability, older age and higher rates of dispersal (Brown,

2014). While most of these processes operate over exceedingly old

times, several studies suggest that Quaternary climatic changes have

played a major role in generating current diversity patterns (Graham,

Moritz, & Williams, 2006; Hewitt, 2000). Quaternary climatic

changes likely caused contraction and expansion of species and

biome ranges. In regions that experienced drastic changes, such as

the Eastern Nearctic, climate generated profound changes in popula-

tion sizes (Burbrink et al., 2016). Some studies show that regions

that experienced less climatic variation have high genetic diversity

due to lower extinction rates and maintenance of larger long-term

population sizes (e.g., Carnaval, Hickerson, Haddad, Rodrigues, &

Moritz, 2009). If climatic changes had a major influence on diversity,

such as causing contraction and expansion of entire biomes, then

synchronous demographic changes are expected across codistributed

populations (i.e., community). Thus, investigating the demographic

history of communities can determine how much influence past cli-

matic change had on biogeographical processes.

In the last decade, data sets and methods that model historical

demographic change have moved from single-locus to genomic scales

(Excoffier, Dupanloup, Huerta-S�anchez, Sousa, & Foll, 2013; Xue &

Hickerson, 2015), while large collections of single-locus data contin-

ued to accumulate in online repositories (Garrick et al., 2015). Single-

locus data, although not very informative for single-species inference

(Degnan & Rosenberg, 2009), may provide important insights about

evolution and biogeography if combined into a single comparative

framework (Hickerson, Stahl, & Lessios, 2006). Thus, the availability

of “community” single-locus data provides an opportunity for large-

scale analyses, both in terms of number of species and geographic

scope. In this context, methods of hierarchical approximate Bayesian

computation (hABC) represent a powerful and flexible approach to

jointly analyse multispecies genetic data from large geographic areas

(Hickerson, Stahl, & Takebayashi, 2007). Recently, Chan, Schanzen-

bach, and Hickerson (2014) proposed an hABC method to analyse

the historical demography of a community using single-locus data.

Their hABC approach simulates a model of demographic change

across n-populations, drawing from uniform distributions: the hyper-

parameter zeta (f), which represents the proportion of simultaneous

demographic change in a community, and the time of simultaneous

demographic change (Ts) (Figure 1a). When f equals one, all popula-

tion size changes occur at the same time. Values lower than one rep-

resent different levels of demographic synchronism which decreases

towards zero. To simulate idiosyncratic expansion (f < 1), popula-

tion-specific expansion times (tn) are sampled from the same uniform

distribution of Ts (Figure 1a). By performing an ABC rejection/regres-

sion on observed and simulated hypersummary statistics, the method

estimates: the proportion of simultaneous demographic change (f),

the time of simultaneous change (Ts), the mean time of all demo-

graphic changes [E(t)] and dispersion across all times (DI; see Chan

et al., 2014 and Methods for details).

One important aspect of the Chan et al. (2014) method is that

no minimum temporal difference is considered when modelling

idiosyncratic demographic changes. Two events would be considered

idiosyncratic regardless of whether they occurred a hundred years

apart or 100,000 years apart. However, it may be incorrect to

assume these two examples as equally idiosyncratic. Fine temporal

differences are likely hard to assess with single-locus data and could

probably be ignored. From a historical biogeography perspective,

these differences may be also irrelevant. It might be more appropri-

ate to model an a priori hypothesis for the timing of synchronous

demographic changes and to constrain the temporal difference

between idiosyncratic events. Hierarchical models that implement

these aspects might fit the data better and increase the variance

among summary statistics generated under different zeta values,

improving the accuracy of posterior estimates.

Here, we implement alternative parameterizations of the demo-

graphic history of a community. We enforce a time difference

between Ts and tn to model idiosyncratic changes, and include the

possibility of defining an a priori hypothesis for the timing of syn-

chronous demographic changes. We evaluated precision and accu-

racy of our implementation and the method of Chan et al. (2014)

using pseudo-observed data (POD). We further used these new

hABC models to conduct a comparative demographic analysis for a

community of 11 species of amphibians and squamates from north-

eastern Brazil, where demographic histories of communities are rela-

tively poorly known throughout the Pleistocene.

The distribution of biomes in northeastern Brazil is consistent

with alternating contraction/expansion cycles of wet forest and

dry formations. The region is primarily covered by a large block

of Seasonally Dry Tropical Forests (SDTF), regionally known as
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Caatinga, characterized by xeric vegetation that tolerates strong

seasonality and unpredictable droughts (Pennington, Lavin, & Oli-

veira-Filho, 2009; Pennington, Prado, & Pendry, 2000). Within

the Caatinga, mesic forests occur as enclaves in areas subject to

orographic rain (known as “brejos-de-altitude”). Eastwards of the

Caatinga, along the coastal plain, wet forest is continuous, form-

ing the Northern Atlantic Forest. The western edge of the Caa-

tinga is isolated from the Amazon Forest by a stretch of

savannah vegetation (Cerrado) (Figure 2). Paleoclimatic inferences

suggest a history of climatic instability oscillating between moist

and dry periods in the Caatinga over the last 1 million years

(Auler et al., 2004a; Wang et al., 2007). Speleothem data indicate

broad similarities in climatic history between Eastern Amazon and

Northern Atlantic Forest in northeastern Brazil during Quaternary

glacial–interglacial cycles, which may have favoured biotic

exchanges between these two regions during climatic wet phases

(Cheng et al., 2013). Phylogeographic analyses of wet forest-

dwelling mammals, birds and reptiles support such exchanges

during the Pleistocene (Batalha-Filho, Fjelds�a, Fabre, & Miyaki,

2013; Costa, 2003; Prates et al., 2016), which implies the former

presence of wet forest corridors in northeastern Brazil, where

the Cerrado and Caatinga currently occur.

To test the hypothesis that the Caatinga has expanded over the

last 1 million years, we analysed mitochondrial data of seven reptile

and four amphibian species with different life histories from north-

eastern Brazil (Caatinga and transition zones). If the Caatinga

expanded during that time, most of its biota should show syn-

chronous expansion, supporting the direct influence of past climate

on demographic histories. In contrast, a pattern of idiosyncratic

expansions, or the absence of demographic expansion for most spe-

cies, suggests erratically expanding biomes and/or the predominance

of species-specific ecological traits governing demographic changes,

which is inconsistent with a major expansion of the Caatinga influ-

encing the evolutionary history of the associated community.

2 | MATERIAL AND METHODS

2.1 | Hierarchical demographic models

Hierarchical demographic models can theoretically represent syn-

chronous population size decreases (i.e., bottlenecks), increases (i.e.,

expansions) or a combination of both. Here, we evaluated the perfor-

mance of the inference of simultaneous population expansions (i.e.,

coexpansion). To simulate coexpansion across populations, we imple-

mented the hABC method developed by Chan et al. (2014), as well as

three modified versions, within the R statistical environment (R Core

Team 2016). The R code used in this study is included in the beta ver-

sion of the PIPEMASTER R-package (Gehara, M.; Mazzocchini G.G. & Bur-

brink F.T. in prep.; www.github.com/gehara/PipeMaster). The method

of Chan et al. (2014) allows the inference of four parameters: (i) the

proportion of simultaneous demographic change (f); (ii) the timing of

simultaneous change (Ts); (iii) the mean time of demographic changes

(a)

(b)

(d)

(c)

(e)

F IGURE 1 Schematic representation and estimates of hABC parameters: (a) three different f values for a five-population data set
coexpansion model. (b–e) Superimposed posterior densities for each of the four parameters estimated under CET, TH, PT and NCT models
using the rejection algorithm. (b) Proportion of coexpanding species (f), (c) coexpansion time (Ts), (d) average expansion time [E(t)] and (e)
dispersion index [DI = var(t)/E(t)], where t are the expansion times [Colour figure can be viewed at wileyonlinelibrary.com]
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[E(t)]; and (iv) the dispersion index (DI), or coefficient of variation of

expansion times, that is the variance in expansion times divided by the

mean [E(t)] (Figure 1a; see Chan et al., 2014). f and Ts are sampled

from a uniform distribution, and when f is lower than one, population-

specific expansion times (tn) are sampled from the same prior (Fig-

ure 3a). Prior distributions of [E(t)] and DI are conditional to f and Ts.

To simulate the magnitude of demographic change, current and ances-

tral population sizes (Ne) are sampled from population-specific priors.

F IGURE 2 Maps showing northeastern Brazil with distribution maps of the 15 populations from seven reptile and four amphibian species
analysed in this study. AM: Amazon, CE: Cerrado (savannah), CA: Caatinga (Seasonally Dry Tropical Forest), AF: Atlantic Forest [Colour figure
can be viewed at wileyonlinelibrary.com]
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Coalescent simulations are performed under those sampled parame-

ters and hypersummary statistics (hSS) are calculated. Posterior distri-

butions of the four parameters of the model are approximated by

taking the observed hSS and applying an ABC rejection step on a col-

lection of simulated hSS values.

The simulation phase consists of five steps:

1. Sample the hyperparameter f from a uniform prior distribution,

with coexpansion proportions defined by the number of popu-

lations being simulated (e.g., for a 10-population data set, f

will have 10 values from 0.1 to 1.0 with 0.1 increments); f

defines only the number of coexpanding populations, the

specific populations that are expanding synchronously are

randomly selected;

2. Draw a single expansion time for the coexpanding populations

(Ts) and, if f is lower than 1.0, one expansion time for each non-

coexpanding populations (tn);

3. Draw population size parameters (current and ancestral) for each

population from population-specific priors;

4. Sample mutation rates from population-specific priors;

5. Simulate genetic data under the coalescent model and calculate

summary statistics.

In Chan et al.’s (2014) model (CEA hereafter), Ts and t are freely

sampled from the same prior. Thus, simulations representing

(a)

(b) (c)

(d) (e)

F IGURE 3 Schematic representation and comparison of the four hABC models: (a) expansion time priors and sampling procedure for the
four coexpansion models simulated in this study. In this particular example, three species are not coexpanding in a 10 species data set. Black
bars represent coexpansion time (Ts) prior distribution. Grey bars represent species-specific expansion time priors; and hashed boxes represent
the threshold that forces Ts and t values to be n-years apart. Numbers on the left of each model show posterior probabilities of models for
our empirical data using neuralnet (bold) and rejection (italic) algorithms. (b–e) correlations between 1,000 simulated pseudo-observed data
(POD) values and estimated parameters using neuralnet and rejection algorithms under the four models. The ABC analyses was conducted using
the abc package in the R statistical environment. Abbreviations on the x-axis represent the four models. Black squares indicate rejection
algorithm and white circles indicate the neuralnet regression. (b) Proportion of coexpanding species (f); (c) coexpansion time (Ts); (d) average
expansion time [E(t)]; (e) dispersion index [DI = var(t)/E(t)], where t = expansion times
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idiosyncratic demographic changes will eventually have similar Ts

and tn values (Figure 3a). When Ts and tn are similar, the derived

hSS will be similar to those generated under higher f values. A large

overlap between summary statistics generated under different f will

potentially decrease the accuracy and precision of posterior esti-

mates.

To increase confidence in estimates, we developed three modi-

fied versions of the CEA that incorporate different priors on the

time parameters (Figure 3a). (i) The Threshold model (TH) differs

from CEA by applying a threshold that forces the coexpansion

time (Ts) and idiosyncratic expansion times (tn) to be n-years apart,

potentially increasing the difference among hSS from different f

values (Figure 3a). This threshold is essentially the buffer parame-

ter implemented in Multi-DICE when there is only a single coex-

pansion pulse (see Prates et al., 2016 and Xue & Hickerson,

2017). (ii) In the Partitioned Time model (PT), the expansion time

(Ts) prior is equally subdivided into narrower, nonoverlapping

blocks of priors that match the number of populations in the data

set. In each simulation cycle, one of these blocks is randomly

assigned to be the prior for the coexpansion time, while the

remaining blocks are randomly assigned to any non-coexpanding

species, so that each species expansion time and the coexpansion

time are drawn from a different prior block (Figure 3a). This

implementation ensures that expansion times are more evenly dis-

tributed across the expansion time prior, likely providing a better

representation of asynchrony. (iii) The Narrow Coexpansion Time

model (NCT), uses a threshold, as in TH, and a separate narrower

prior for coexpansion time. When f is lower than one, the expan-

sion time for the coexpanding species (Ts) is sampled from this

narrower prior, and the expansion time for the non-coexpanding

species (t), from a different wider prior (Figure 3a). This model

represents a specific hypothesis of when the synchronous demo-

graphic change happened, narrowing possible Ts values, and

potentially increasing precision and accuracy of f estimates by

reducing the parameter space.

2.2 | Implementation and simulation of hierarchical
models and hypersummary statistics

To simulate genetic data, we used ms (Hudson, 2002), which is

implemented as a function inside the R-package phyclust (Chen,

2011). We sampled population sizes from uniform distributions using

the runif R function (R Core Team 2016). Ancestral population sizes

were defined as proportions of current sizes, while current effective

population sizes were defined in number of individuals. Expansion

times were defined in years.

We transformed sampled values to coalescent scale according to

the ms manual as follows:

H ¼ 4Nel� bp � I

where l is the sampled mutation rate per base pair per generation,

bp is the number of base pairs, and I is the inheritance scalar (set as

0.25 for the mtDNA).

Expansion times were sampled in years and transformed to the

coalescent scale as follows:

s ¼ t=g
4Ne�I

where t is the sampled expansion time in years, g is the generation

time in years, and I is the inheritance scalar.

We selected a group of four summary statistics that are depen-

dent on population size and demographic history (Tajima, 1989).

These are similar to those used by Chan et al. (2014), but we

replaced number of haplotypes by segregating sites (S). The number

of segregating sites is generated automatically in ms, requiring no

calculation and speeding up simulation cycles. The other summary

statistics were nucleotide diversity (pi), haplotype diversity (h) and

Tajima’s D (TD). TD and pi were calculated using ape (Paradis,

Claude, & Strimmer, 2004) and pegas (Paradis, 2010). Haplotype

diversity was calculated using our own R function according to Nei

and Tajima (1981). We are aware of the influence of summary statis-

tics on the power of ABC inferences (Burr & Skurikhin, 2013); how-

ever, an extensive evaluation of that influence was beyond the

scope of our present study. The summary statistics used here should

provide a good trade-off between demographic information and

dimensionality (see Method evaluation below). To transform the

summary statistics into hypersummary statistics, the four moments

(mean, variance, kurtosis and skewness) for the distribution of each

group of statistics were calculated using R-base functions or e1071

package (Meyer, Dimitriadou, Hornik, Weingessel, & Friedrich, 2015),

totalling 16 hypersummary statistics.

2.3 | Method evaluation

To evaluate precision and accuracy of estimates of f, Ts, E(t) and DI

under the different coexpansion models, we used pseudo-observed

data (POD) that consisted of simulated data for which the observed

values of each parameter were known. We compared PODs with

the respective parameter estimates using the ABC approach. We

first performed, for each of the four models (CEA, TH, PT and NCT),

1,000,000 simulations of a data set containing 10 populations. We

sampled the proportion of coexpanding populations from a uniform

prior ranging from 0.1 to 1.0. For population-specific priors, we took

a subset of the distributions used for the empirical data analysed in

this study (Table 1). We used the same priors for f and Ts as used in

our empirical data (see below). We then performed, for each model,

an ABC parameter estimation for 1,000 PODs generated under the

same model. We retained the 100 closest simulations using the rejec-

tion and Neural Network (neuralnet) algorithms implemented in abc

(Csill�ery, Franc�ois, & Blum, 2012). Preliminary analyses with a larger

number of simulations per model (109 more) did not result in higher

precision and accuracy (data not shown). We plotted the POD

parameters against estimated values for visual inspection and also

performed Pearson’s correlation tests (Pearson, 1895) to compare

the performance of each model and each ABC algorithm. Addition-

ally, to evaluate whether reduction of dimensionality of summary
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statistics could increase the power of parameter estimates, we also

performed a principal component analysis (PCA) on our summary

statistics using the R-base prior to the ABC estimation. We com-

pared the power of estimates using all 16 hypersummary statistics,

the first three principal components (PCs), and the first 10 PCs of

our summary statistics.

The four coexpansion models have different assumptions which

might be violated by some data. To evaluate how each model per-

forms under model violations, we compared estimates under a cer-

tain model (e.g., CEA) for PODs generated under the other three

models (e.g., TH, PT and NCT). We conducted this exercise for all

four models.

2.4 | Empirical data collection

We assembled mitochondrial gene fragments (mtDNA) from 11 spe-

cies (Figure 2), three of them available on GenBank. We downloaded

sequences of Ameivula ocellifera, Phyllopezus pollicaris and Pleurodema

diplolister; obtained previously generated sequences of Vanzosaura

multiscutata (Recoder et al., 2014); and generated new data for

Micrablepharus maximiliani, Polychrus acutirostris, Lygodactylus klugei,

Dermatonotus muelleri, Phyllomedusa nordestina, Rhinella jimi and Phi-

lodryas nattereri. We isolated genomic DNA using standard salt

extraction protocols (Bruford, Hanotte, Brookfield, Burke, & Hoelzel,

1992) or the Qiagen DNAeasy extraction kit and amplified mtDNA

using PCR techniques (see Table S1 for primers and annealing tem-

peratures). Sequence alignments with locality information are depos-

ited in Dryad (https://doi.org/10.5061/dryad.789pv).

2.5 | Data treatment pipeline

Many single-locus data available online, particularly those originat-

ing from poorly studied areas of the globe, suffer from incomplete

taxonomic and/or phylogeographic knowledge. These deficiencies

may prevent comparative phylogeographic analyses or influence

results because: (i) it is difficult to define a consistent prior distri-

bution without phylogeographic knowledge, and prior distributions

are crucial for any Bayesian analysis (Hickerson et al. 2013; Oaks

et al. 2012); (ii) coalescent model used here assumes panmictic

populations (Hudson, 2002) and the data may violate this assump-

tion; (iii) the data may suggest demographic stability for a particu-

lar population. It is not logical, however, to test for synchronism

of demographic change if the data does not support demographic

change for the populations being analysed. To overcome these

issues, we developed a data treatment pipeline to minimize poten-

tial pitfalls due to poorly illuminated data. We used the Bayesian

Generalized Mixed Yule Coalescent (bGMYC; Fujisawa & Barra-

clough, 2013; Reid & Carstens, 2012) to define populations and

ensure that the data contained the minimal populational substruc-

ture possible. We evaluated demographic change through time for

each population using the Bayesian Skyline Plot method (BSP;

Drummond, Rambaut, Shapiro, & Pybus, 2005) and neutrality tests.

To generate prior information on long-term population sizes, we

used IMa2 single-population models (Hey, 2010). These analyses

were automated using R scripts that allowed easy data scalability.

These scripts are available on GITHUB (github.com/gehara/ME_caa

tinga_scripts).

TABLE 1 Priors distributions used in the simulations. Current Ne, ancestral Ne and expansion time were derived from IMa2 and Bayesian
Skyline plot analyses. Mutation rates and generation times were taken from the literature (see Methods)

Species

Ne

Ancestral Ne

(multiplier) Expansion time Mutation rate

bp N IS GenMin Max Min Max Min Max Mean SD

Ameivula ocellifera 1 1,500,000 4,000,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 370 58 0.25 2

Ameivula ocellifera 2 900,000 3,500,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 370 31 0.25 2

Dermatonotus muelleri 1a 120,000 1,200,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 514 16 0.25 1

Dermatonotus muelleri 2a 700,000 1,800,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 514 32 0.25 1

Lygodactylus klugei a 1,300,000 3,700,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 679 45 0.25 1

Philodryas nattereri 1,900,000 4,100,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 686 58 0.25 2

Phyllopezus pollicaris 1a 140,000 1,050,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 942 17 0.25 1

Phyllopezus pollicaris 2a 460,000 1,480,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 942 46 0.25 1

Micrablepharus maximilliani a 870,000 2,400,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 1524 31 0.25 1

Vanzosaura multiscutataa 480,000 1,900,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 735 33 0.25 1

Phyllomedusa nordestina 1a 800,000 4,850,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 527 12 0.25 1

Phyllomedusa nordestina 2a 860,000 4,470,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 527 14 0.25 1

Rhinella jimia 290,000 1,600,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 533 31 0.25 1

Pleurodema diplolister 4,000,000 7,020,000 0.001 0.1 50,000 1,000,000 1E-8 1.5E-9 601 166 0.25 1

bp, number of base pairs; N, number of samples; IS, inheritance scalar; Gen, Generation time.
aPriors used in the model evaluation.
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2.6 | Defining populations for Caatinga species with
bGMYC

To exclude deep genetic structure from the data, we used the

Bayesian Generalized Mixed Yule Coalescent method (bGMYC),

which delimits species using single-locus data while accounting for

topological uncertainty (Fujisawa & Barraclough, 2013; Reid & Car-

stens, 2012). The method sort the data based on the change from

birth–death process (i.e., population-level process) to Yule process

(i.e., above population-level process). Thus, we used the method to

ensure that the data from each species contained only genetic

information from population-level processes. For each species, we

generated an ultrametric tree in BEAST v1.8.2 (Drummond, Suchard,

Xie, & Rambaut, 2012) using the entire sequence alignment.

Because the accuracy of gene tree topologies should have no

major influence on our results, and they are not the main focus of

the study, we assumed, for all species, an HKY+G substitution

model with a Bayesian Skyline Plot (BSP) tree prior (Drummond

et al., 2005). We used a strict molecular clock model with a sub-

stitution rate of 10�8/site/generation for reptiles and amphibians

(Crawford, 2003; Eo & DeWoody, 2010; Hauswaldt et al., 2014;

Macey et al., 2001; Oliveira et al., 2015). We ran the MCMC for

20 million steps, sampling every 2,000 steps, and insured that the

effective sample sizes of parameters were at least higher than 100

using CODA v0.19-1 (Plummer, Best, Cowles, & Vines, 2006). The

resulting ultrametric trees were used as input for the BGMYC analy-

ses. For these analyses, we ran an MCMC chain of 50,000 steps,

with 40,000 steps of burn-in and thinned the results by 100. We

ran the analyses using 100 trees randomly sampled from the pop-

ulation of 8,000 trees obtained from BEAST after a 20% burn-in.

From the resulting BGMYC analyses, we retained all defined popula-

tions that contained at least 15 individuals. Only for Polychrus acu-

tirostris and Phyllomeduza nordestina did we keep populations

containing 11 individuals or more. We excluded populations with

fewer individuals to avoid bias on demographic estimations.

2.7 | Population size changes through time and
long-term Ne estimates

We evaluated population size changes through time using Baye-

sian Skyline Plot (BSP) analyses in BEAST v.1.8.2 (Drummond et al.,

2005) and tested deviations from neutrality using Tajima’s D

(Tajima, 1989) and R2 tests (Ramos-Onsins & Rozas, 2002). For

the BSP, we used the same settings described above. To rescale

the BSP, we multiplied the x-axis by the generation length of

each species to obtain the time in years (Table 1). We calculated

Tajima’s D and R2 and respective p-values using pegas with

default settings. Populations that showed no signs of expansion

according to the BSP and nonsignificant deviations from neutrality

were excluded from the coexpansion simulations and were consid-

ered, a priori, as non-coexpanding. We also evaluated the long-

term average population size using IMa2 (Hey, 2010). This analy-

sis was run using a single-population model containing only the

theta parameter. We used a theta prior limit of 50 and assumed a

mutation rate of 10�8/site/generation, which was corrected to

the gene mutation rate by multiplying by the number of base

pairs of each respective gene. We took 10,000 samples with a

burn-in of 200,000 genealogies and evaluated the effective sam-

ple sizes and chain mixing by checking the trend plots within the

IMa2 output. The 95% high posterior densities of population sizes

were used as boundaries for the current population size prior of

each species.

2.8 | Priors’ distributions and settings for the
Caatinga hierarchical models

The species-specific priors for population sizes were derived from

the BSP and the IMA2 analyses (Table 1). We set wide uniform

priors from 50,000 to 1,000,000 years for the expansion times (Ts)

for CEA, TH and PT models. According to the BSP results, we set

for the NCT model an independent uniform prior from 50,000 to

300,000 years before present for Ts. For TH and NCT we applied

a threshold of 50 ky of minimum difference between coexpansion

time (Ts) and population-specific expansion times (tn). Because dif-

ferent mitochondrial genes may have different mutation rates, we

sampled mutation rates from a normal prior (mean: 10�8/site/gen-

eration; SD: 1.5 9 10�9) to accommodate this variation. A mean at

10�8/site/generation is consistent across different studies that

conducted mutation rate estimations for amphibians and reptiles

(Crawford, 2003; Eo & DeWoody, 2010; Hauswaldt et al., 2014;

Macey et al., 2001; Oliveira et al., 2015). We assumed a genera-

tion length of 1 year for amphibians and 2 years for reptiles (Des-

sauer, Cole, & Townsend, 2000; Duellman & Trueb, 1994; pp. 33).

For each model, we performed 11,200,000 simulations, corre-

sponding to 800,000 data sets per species. All simulations were

carried out in the City University of New York High Performance

Computing Center; however, it is important to note that to simu-

late the same amount of data in a single core with 2.6 GHz of

processing power would take only ~10 days. We evaluated the fit

of the simulations to our observed data by performing a principal

component analysis (PCA) on the hypersummary statistics, plotting

the first and second PCs, and the first and third PCs, of simulated

and observed data (Fig. S1).

2.9 | Model selection and parameter estimation

We conducted an ABC model selection to evaluate which of the

four simulated models better fit our data. For that we used

2 9 106 simulations of each model. We applied both the rejection

and the neuralnet algorithms with sizenet of 10, numnet of 20 and

maximum iterations of 2,000, without correction for heteroscedas-

ticity, and with a tolerance of 0.00005. We also estimated, for

each one of the four simulated models, the posterior distribution

of each parameter for our empirical data using abc function

(Csill�ery et al., 2012) with the same settings as above and a toler-

ance of ~0.00004.
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3 | RESULTS

3.1 | Method evaluation

All estimated parameters (f, E(t), Ts and DI) under all models were

significantly correlated with true POD values (p < 10�5), using both

rejection and neuralnet regression algorithms (Table 2; Figure 3b–e).

Nevertheless, there was a large variation on precision and accuracy

across models for estimates of the proportion of coexpanding pop-

ulations (f) (between 0.31 and 0.74). For both accuracy and preci-

sion among all models, NCT performed the best for estimating f

(Figure 4a,b), while CET had the poorest performance for this

parameter (Figure 4a,b). In general, under CET, TH and PT, high f

values were underestimated while low f values were overestimated,

generating a distortion on posteriors, particularly when using the

neuralnet algorithm. Distortion on posterior distributions may hap-

pen when the true value is at the boundary of a uniform prior

(Beaumont, 2011).

Among the other parameters, the mean expansion time [E(t)]

showed the highest correlation across all models (r > .8; Figures 3d

and 5a,b). E(t) is the easiest parameter to estimate and can be

obtained with the same confidence under all models (Figure 5a,b).

The dispersion index (DI) showed the lowest correlation

(.45 < r < .6), and the coexpansion time showed intermediate values

(.5 < r < .67; Figure 3c,e). Parameterizations under PT showed

slightly higher correlations for time of simultaneous demographic

change estimates (Ts; Figure 4c,d) and for the dispersion index (DI;

Figure 5c,d).

The reduction of summary statistics dimensions using PCA did

not improve posterior estimates. Estimates using the first three PCs

were less accurate and precise under all models, as indicated by

lower correlation values. Estimates using the first 10 PCs or all 16

hypersummary statistics were similarly correlated, suggesting compa-

rable accuracy and precision of estimates (Fig. S2).

The NCT model was the most sensitive to violations and showed

poor performance when PODs were generated under a different

model (Fig. S6). All models yielded better estimates of f when PODs

were generated under NCT, and worse estimates of f when PODs

were generated under CEA (Figs S3–S6). The average expansion

time, E(t), was the least sensitive parameter, showing higher correla-

tion even under model violations.

3.2 | Population sizes change and long-term Ne

estimates for the Caatinga community

After delineating lineages showing deep genetic breaks with

bGMYC, we defined 15 populations useful for further testing. The

following species were divided into two populations: Ameivula ocel-

lifera, Dermatonotus muelleri, Phyllopezus pollicaris and Phyllomedusa

nordestina.

TABLE 2 Pearson’s correlation between PODs and parameters estimated with rejection and neuralnet ABC algorithms

Rejection Neuralnet

rho CI rho CI

zeta

CEA 0.389848 0.3359745–0.4411785 0.312631 0.2555915–0.3675016

TH 0.434682 0.3830099–0.4836422 0.333775 0.2775244–0.3877450

PT 0.537105 0.4914760–0.5797924 0.4574406 0.4069890–0.5051097

NCT 0.737049 0.7073769–0.7641273 0.6905998 0.6567226–0.7216954

Ts

CEA 0.637605 0.5993004–0.6729964 0.6130591 0.5728370–0.6503359

TH 0.622318 0.5828096–0.6588916 0.6111111 0.5707403–0.6485346

PT 0.65361 0.6166016–0.6877368 0.6021918 0.5611473–0.6402821

NCT 0.570439 0.5270855–0.6108312 0.5149131 0.4678544–0.5590604

E(t)

CEA 0.826121 0.8053745–0.8448466 0.8094157 0.7869082–0.8297723

TH 0.813968 0.7919361–0.8338828 0.8146041 0.7926391–0.8344572

PT 0.819376 0.7979137–0.8387637 0.822642 0.8015252–0.8417095

NCT 0.845919 0.8273115–0.8626729 0.8261054 0.8053570–0.8448323

DI

CEA 0.499194 0.4511632–0.5443419 0.4724239 0.4228137–0.5192108

TH 0.560024 0.5159433–0.6011468 0.5595516 0.5154382–0.6007071

PT 0.604872 0.5640291–0.6427631 0.6190278 0.5792642–0.6558523

NCT 0.53402 0.4881885–0.5769138 0.4940027 0.4456577–0.5394745

All correlations are significant, p < .001.
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Of the 15 populations, 14 showed signal of expansion as sug-

gested by BSPs (Figure 6). All populations showed negative Tajima’s

D but only three had significant values, while R2 values were signifi-

cant for 11 populations (Table 3). Polychrus acutirostris showed pop-

ulation stability in the BSP and nonsignificant R2 and Tajima’s D and

was therefore excluded from the coexpansion simulations. BSPs sug-

gested that most populations expanded between 50 and 300 ky.

The two populations of A. ocellifera, Philodryas nattereri and

P. nordestina showed earlier expansion (Figure 6). Nevertheless, all

patterns of expansion fell within the Pleistocene. Long-term esti-

mates of Ne for each population ranged from ~418,000

(Dermatonotus muelleri population 1) to ~5,000,000 (Pleurodema

diplolister; see Table 1 for all confidence intervals), as suggested by

IMa2 single-population analyses.

3.3 | Parameter estimates and model selection for
the Caatinga community

Estimates were largely congruent among models and generally indi-

cated highly synchronous population expansion occurring in the late

Pleistocene. Under all models, posterior distributions obtained with

the rejection algorithm showed high density around high values of f,

(a) (b)

(c) (d)

F IGURE 4 Plots of 1,000 PODs and their respective estimates showing the precision and accuracy of: (a, b) proportion of synchronous
population size changes (f); (c, d) time of synchronous expansion (Ts). (a, c) Estimates with rejection. (b, d) Estimates with the neuralnet. Red line
represents a perfect correlation between estimate and true value [Colour figure can be viewed at wileyonlinelibrary.com]
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largely overlapping Ts and E(t) distributions, and DI posteriors with

high density near zero (Figure 1b–e, Table 4). The neuralnet regres-

sion produced relatively lower f under all models (Fig. S7). The mode

of the posterior density for the proportion of coexpanding popula-

tions (f) ranged from 0.68 (under CEA and neuralnet algorithm) to

0.99 (under PT and rejection algorithm; Table 4, Figure 1b). The pos-

terior distribution of the coexpansion time (Ts) differed among mod-

els with modes ranging between 118 and 224 ky (Table 4,

Figure 1c). The modes of average expansion time [E(t)] ranged from

166 to 294 ky, depending on the model and on the ABC algorithm

used (Table 4, Figure 1d). The modes of dispersion index (DI) ranged

from 4 to 127 ky (Figure 1e). Model selection indicated NCT as hav-

ing the highest probability, with 0.52 probability using rejection and

0.78 using the neuralnet (Figure 3a).

4 | DISCUSSION

4.1 | Model evaluation

The most accurate way to estimate the level of demographic syn-

chronism (f) is by providing an a priori hypothesis for the timing of

synchronous change (Ts), as suggested by the better performance of

(a) (b)

(c) (d)

F IGURE 5 Plots of 1,000 PODs and their respective estimates showing the precision and accuracy of: (a, b) mean expansion time [E(t)]; (c,
d) dispersion index (DI). (a, c) Estimates with rejection. (b, d) Estimates with the neuralnet. Red line represents a perfect correlation between
estimate and true value [Colour figure can be viewed at wileyonlinelibrary.com]
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NCT model. Our results also suggest that it is hard to estimate fine

temporal differences in expansion times. All models performed better

for PODs generated under the NCT, indicating that it is easier to

estimate f when the empirical data show large temporal differences

between the time of the simultaneous demographic change (Ts) and

idiosyncratic expansion times (tn).

Defining an a priori hypothesis for the timing of synchronous

change, with a narrow prior on Ts, may generate inconsistency

between empirical and simulated data. This inconsistency may

explain the high sensitivity of NCT to model violations. Thus, it is

essential to ensure that prior distributions of hABC models are con-

sistent with the data. Furthermore, defining informative priors in

hABC is crucial because wide, less informative uniform priors may

bias results towards high levels of synchronism (Hickerson et al.

2013; Oaks et al. 2012). Our use of narrow priors and our alterna-

tive parameterizations may explain the lack of such bias in our model

evaluation (Hickerson et al. 2013).

Forcing expansion times to be more evenly distributed across

the time prior (PT model) can marginally improve estimates of the

coexpansion time (Ts), the mean expansion time [E(t)] and the disper-

sion index (DI). One advantage of PT over NCT is that no a priori

hypothesis for the time of synchronous demographic change (Ts) is

assumed. Thus, estimates of Ts under PT should help define Ts priors

for the NCT model, which is more accurate for estimating f.

Our method evaluation was tested for our case study, so gener-

alizations should be made with care. Still, our conclusions should

F IGURE 6 Combined Skyline plots median estimates of population size change through time for all 15 populations. The x-axis represents
time, with the present at the origin. The y-axis represents effective population size [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Neutrality tests with significance values for all
population analysed in this study

R2 p-value Tajima’s D p-value

Ameivula ocellifera 1 0.04 .021 �1.71 .087

Ameivula ocellifera 2 0.07 .079 �1.07 .286

Dermatonotus muelleri 1 0.12 .264 �0.52 .603

Dermatonotus muelleri 2 0.04 .000 �2.41 .016

Lygodactylus klugei 0.03 .000 �2.23 .025

Micrablepharus maximiliani 0.05 .001 �1.94 .052

Polychrus acutirostris 0.18 .741 �1.14 .252

Pleurodema diplolister 0.02 .008 �2.17 .030

Philodryas nattereri 0.04 .010 �1.82 .069

Phyllomedusa nordestina 1 0.08 .002 �1.52 .128

Phyllomedusa nordestina 2 0.07 .000 �1.36 .174

Phyllopezus pollicaris 1 0.08 .017 �1.89 .058

Phyllopezus pollicaris 2 0.06 .064 �1.44 .149

Rhinella jimi 0.06 .017 �1.71 .087

Vanzosaura multiscutata 0.05 .003 �1.77 .076

TABLE 4 Mode and credible intervals of posterior distributions of parameters estimated under each of the four models using the neuralnet
(italic) and the rejection algorithm (bold)

zeta Ts E(t) DI

neuralnet rejection neuralnet rejection neuralnet rejection neuralnet rejection

CEA 0.79 (0.36–0.94) 0.96 (0.14–1) 212 (104–324) 224 (117–434) 274 (200–362) 270 (174–432) 112 (79–185) 6 (0–236)

TH 0.68 (0.4–0.8) 0.97 (0.21–1) 204 (113–327) 221 (123–406) 297 (233–386) 295 (172–428) 125 (86–229) 5 (0–244)

PT 0.95 (0.6–1.05) 0.99 (0.5–1) 118 (73–184) 147 (85–263) 166 (102–240) 185 (110–323) 59 (10–150) 4 (0–332)

NCT 0.82 (0.45–0.93) 0.98 (0.4–1) 159 (111–238) 218 (110–287) 264 (200–335) 262 (176–386) 115 (81–202) 4 (0–244)

Posterior distributions were obtained with the ABC rejection and neuralnet regression algorithm using the abc R-package and retaining the closest 500

simulations. Between parentheses is the 2.5–97.5% HDP. Values of Ts, E(t) and DI are shown in Kyears.
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provide a guide for future analysis. Future studies should consider at

least PT and NCT models to confirm posterior estimates. A model

selection step can also indicate the best model before calculating

posterior distributions. Also, as in any ABC analysis, it is important

to assess model fit using, for instance, principal component analysis

and/or cross-validation experiments (Cornuet, Ravigne, & Estoup,

2010).

Even with good model fit, posterior estimates should be inter-

preted cautiously and should provide an idea of how strong the

genetic signal is in support of temporal concordance or discordance

among independent demographic histories. Single-locus data have

relatively more noise due to the stochasticity of the coalescent pro-

cess, which is likely the reason for the wide credible intervals of pos-

teriors. It is difficult to estimate all four parameters of interest here

with high precision and accuracy. Combining results from posteriors

of all parameters should help to properly evaluate the signal of

demographic synchronism. For instance, when f equals one, E(t) and

Ts have the same value, and DI equals zero (Figure 1a). Thus, high

similarity between E(t) and Ts posterior distributions and high density

of DI posteriors near zero are all indicative of highly synchronous

demographic changes.

A potential improvement to the method could include models

that simulate pulses of demographic changes similar to pulses of

divergence simulated in msBayes or the demographic pulses of

Multi-DICE (Hickerson et al., 2007; Xue & Hickerson, 2017). These

models could represent alternative scenarios that may fit the data

better, particularly when synchronism is not high, and could be used

to gain refined insights on the demographic history of a community.

However, the level of confidence on the inference of demographic

pulses using single-locus data is unknown and should be evaluated

by future studies.

4.2 | Simultaneous expansion of the Caatinga
herpetofauna

We show that the Caatinga herpetofauna is characterized by syn-

chronous population expansions around the beginning of the Late

Pleistocene (Modes across models: 118–224 ky). There is, under all

models, a high proportion of coexpanding populations (high f), lar-

gely overlapping posterior distribution of coexpansion times (Ts) and

average expansion times [E(t)], and high density of dispersion indexes

(DI) close to zero. According to BSPs and neutrality tests, only one

species, Polychrus acutirostris, shows population stability and by defi-

nition does not have a synchronous history with the other species.

Our results support a major spatial reorganization of Caatinga

landscape in the late Pleistocene, with expansion of dry formations

and related contraction of wet forests in northeastern Brazil. Several

palaeontological studies show dynamic climatic changes in northeast-

ern Brazil for the last 1 Mya, with periods of aridity and changes in

the Caatinga vegetation (Auler & Smart, 2001; Auler et al., 2004b;

De Oliveira, Magno, & Suguio, 1999; Wang et al., 2004). Many phy-

logeographic studies show evidence of population and/or range

expansion for Caatinga species (Caetano et al., 2008; Faria,

Nascimento, De Oliveira, & Bonvicino, 2013; Franco & Manfrin,

2013; Magalhaes et al., 2014; Monteiro, Donnelly, Beard, & Costa,

2004; Oliveira et al., 2015; Thom�e et al., 2016; Werneck, Leite,

Geurgas, & Rodrigues, 2015), although our study uniquely models

historical demography at the community level using hABC.

We analysed species that are phylogenetically and ecologically

distinct, including some taxa with high seasonal activity, such as Der-

matonotus muelleri (Nomura, Rossa-Feres, & Langeani, 2009), and

others that are active year round, like Ameivula ocellifera (Mesquita &

Colli, 2003). Despite these ecological differences, most taxa showed

population expansion. In such cases, a hypothesis of climatically dri-

ven demographic change requires fewer assumptions by assigning

the cause of expansion to a single factor. It is therefore unexpected

to have synchronous expansion of phylogenetically distant species

driven by species-specific ecological factors. Still, our target species

are characterized by very different ecological adaptations and life

history strategies that maintain large population sizes in the face of

climatic fluctuations, increasing aridity and seasonality. Thus, the

expansion of Caatinga habitats was likely extensive, affecting syn-

chronously increasing the population sizes of distantly related dry-

adapted organisms.

Fossil records from late Pleistocene caves from northeastern Bra-

zil show the presence of arboreal and wet forest-dwelling mammal

species that are no longer present in the area, such as extinct giant

monkeys and bat species currently restricted to wet forests (Auler

et al., 2004b; Cartelle & Hartwig, 1996; Czaplewski & Cartelle,

1998). This suggests that increased aridity likely decreased habitat

suitability for wet forest-adapted species, leading to population con-

traction and local extinction. On the other hand, species with traits

allowing them to expand their population sizes could remain in the

area, forming communities adapted to aridity and seasonality. For

example, two species of frogs analysed here, Dermatonotus muelleri

and Pleurodema diplolister, exhibit aestivation behaviour, which is a

clear adaptation to aridity (Navas & Carvalho, 2010).

We found synchronous population expansion of codistributed

Caatinga species at ~150 ky (2.5%ile: 85 ky; 97.5%ile: 260 ky),

based on estimates under PT and rejection algorithm, and at ~220 ky

(2.5%ile: 110 ky; 97.5%ile: 287 ky) under NCT and rejection algo-

rithm. During this time, three short wet phases (~200 to ~210 ky;

~175 to ~185 ky; ~130 to ~140 ky) and three longer dry phases

(~185 to ~200 ky; ~140 to ~175 ky; ~110 to ~130 ky) occurred in

the Caatinga (Auler et al., 2004a; Wang et al., 2004). It is difficult to

associate the credible intervals of Ts estimates with a specific

inferred climatic phase, but they still indicate that the size of the

Caatinga increased in the last ~260 ky. Also in support of that is the

highest probability found for the NCT model, which assumes a Ts

between 50 and 300 Ky. In contrast to the expansion of Caatinga

and dry-adapted taxa, population contraction is expected for species

restricted to wet forest enclaves and adjacent continuous wet forest

from northeastern Brazil. Interestingly, recent studies suggest popu-

lation contraction of wet forest-dwelling reptiles and birds in North-

ern Atlantic Forest (NAF) and Eastern Amazonia (EAM; Cabanne

et al., 2016; Prates et al., 2016).
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Paleoclimatic inferences suggest that EAM and NAF were less

stable than the southern Atlantic Forest (SAF) and western Amazon

(WAM). They also suggest that when the NAF and EAM were more

arid, the SAF and WAM were more humid (Cheng et al., 2013). The

expansion of dry biomes with fragmentation of wet forest in north-

eastern Brazil and the evidence of southward displacement of frogs

and birds from the Atlantic Forest are in agreement with this

hypothesis (Cabanne et al., 2016; Carnaval et al., 2009; Menezes

et al., 2016). Considering more recent times, from the Last Glacial

Maximum to current conditions, different paleoclimatic distribution

models support either stability (Werneck, Costa, Colli, Prado, & Sites,

2011) or instability (Collevatti et al., 2013) in parts of the Caatinga.

However, the occurrence of population expansion for the majority

of species undermines the hypothesis of a “Caatinga nucleus” repre-

senting a stable refuge of STDF throughout the Pleistocene (see also

de Melo, Lima-Ribeiro, Terribile, & Collevatti, 2016).

Our results support the hypothesis that wet forest enclaves

found in moister highlands (“brejos-de-altitude”) represent micro-

refuges of a once more widespread wet forest that likely connected

the Amazon and the Atlantic Forest during the Pleistocene

(Andrade-Lima, 1982; Batalha-Filho et al., 2013; Costa, 2003; Melo

Santos, Cavalcanti, da Silva, & Tabarelli, 2007; Prado & Gibbs, 1993;

Prates et al., 2016). Herpetological inventories also support this “for-

est connectivity” hypothesis and show higher species richness in

humid highland areas (Guedes, Nogueira, & Marques, 2014; Loeb-

mann & Haddad, 2010; Pereira Filho & Montingelli, 2011; Ribeiro,

Roberto, Sales, �Avila, & de Oliveira Almeida, 2012).

We present evidence in support of Late Pleistocene expansion

of the Caatinga and adjacent dry formations in northeastern Brazil.

This overwhelming signal strongly indicates that populations have

expanded at congruent times regardless of their heterogeneous

physiological and ecological requirements. However, to confirm our

findings, future studies should investigate synchronous population

expansion of other groups of Caatinga organisms, and also popula-

tion contraction of wet forest-adapted species in the same area.

With the use of genomic data, it should be easier to estimate

narrower credible intervals and factor out selection from demo-

graphic change to better determine whether simultaneous expan-

sion is associated with convergent adaptation in the formation of

Caatinga biota.
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