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Abstract

Genetic patterns are shaped by the interaction of different factors such as distance, bar-
riers, landscape resistance and local environment. The relative importance of these pro-
cesses may vary for species with different ecological traits. Here we compared two related
Amazonian riverine turtle species (Podocnemis erythrocephala and Podocnemis sextu-
berculata) with distinct dispersal abilities to assess how differently local and connectiv-
ity variables influence their genetic patterns. We used a total of 609 genetic samples to
estimate mitochondrial (mtDNA) genetic diversity and differentiation for each locality. We
applied model selection on models associating genetic diversity to local variables repre-
senting hypotheses of climate and primary productivity, water level variation, hunting pres-
sure and downstream increase in genetic diversity. We modeled the relationship of genetic
differentiation with connectivity variables representing hypotheses of isolation by distance
(IBD), isolation by resistance (IBR) and isolation by barrier (IBB). Model selection for
genetic diversity was only important (excluded the null model) for the high-dispersal spe-
cies (P. sextuberculata), with best models including hypotheses of productivity and hunting
pressure. Genetic diversity was higher in more productive sites and in sites with higher
concentration of villages (opposed to expected). Although a variable importance testing
showed low importance for connectivity models, IBB (Amazon River) and IBR (resistance
by current and past climatic suitability and river color) models explained more genetic dif-
ferentiation turnover than IBD (riverway distance). Models explained a higher percentage
of genetic differentiation for the low-dispersal species (P. erythrocephala), with Amazon
River as main predictor. We show that, although local variables are often overlooked in riv-
erscape genetics studies, they can influence intrapopulacional genetic diversity of aquatic
species, even those with high dispersal ability. By applying a resistance-model framework
and by using riverscape genetics factors relevant in basin-wide context, we provide a novel
approach to investigate genetic patterns of other aquatic vertebrates in fluvial systems.
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Introduction

Associations between landscape factors and ecological processes such as dispersal, repro-
duction and survival of organisms can ultimately affect evolutionary processes such as
gene flow, drift and selection (Sork and Waits 2010). Understanding these associations and
their effects is essential for species conservation because factors that negatively impact the
genetic diversity and connectivity of populations can eventually drive species extinction
(Spielman et al. 2004). Landscape genetics emerged as a research field that combines pop-
ulation genetics, landscape ecology, and spatial analyses to explicitly quantify the effects of
landscape composition, configuration, and matrix quality on evolutionary processes (Balk-
enhol et al. 2016). Since the term was coined (Manel et al. 2003), the field evolved from
descriptive approaches to explicit hypothesis testing framework and modeling of genetic
responses in response to predictive landscape variables (Storfer et al. 2010). Although
only 15% of landscape genetic studies were conducted in freshwater habitats (Storfer et al.
2010), there is mounting evidence for complex spatial genetic structure in these habitats
(e.g., Hughes et al. 2009; Ozerov et al. 2012; Hand et al. 2015). However, in freshwa-
ter environments, especially in fluvial systems, the process of isolation by distance-IBD
(Wright 1943) can often overwhelm the importance of other processes that might shape
genetic patterns (Selkoe et al. 2016). As such, in river systems, it is especially necessary to
implement approaches that are able to disentangle the confounding effects of geographical
distance and other environmental factors.

While IBD is responsible for part of the population genetic structure in several taxa
(Jenkins et al. 2010), landscape environmental heterogeneity can affect synchronization
of migration and mating processes among populations, modifying gene flow patterns and
increasing genetic differentiation (Wang and Bradburd 2014). Riverscape genetics studies
usually test for discrete barriers (isolation by barrier, IBB) such as waterfalls and dams
(Kanno et al. 2011; Wofford et al. 2005). Nevertheless, less conspicuous factors, such as
stream slope gradient and water physical-chemical dissimilarities may also act as barri-
ers to gene flow and cause detectable differentiation (Beheregaray et al. 2015; Cook et al.
2011). These environmental dissimilarities are rarely—if at all—assessed in terms of
resistance to migration between populations, resulting in a lack of empirical studies with
riverscape resistance models (Davis et al. 2018). For terrestrial species, least-cost paths
(LCPs) and resistance surfaces have been shown to better predict gene flow patterns among
localities than direct measures of dissimilarity or distances (McRae 2006; Wang et al.
2013). Also, integration of climatic suitability models into LCP analyses can improve our
understanding on landscape connectivity, potential routes of dispersal and distribution of
suitable habitats for the species (Wang et al. 2008).

Connectivity variables alone often do not explain observed spatial genetic structure of
freshwater populations, and local processes may also influence neutral genetic patterns
(Murphy et al. 2010; Kovach et al. 2015). Local factors can affect effective population sizes
(Ne) and, through genetic drift, leave a strong signal in genetic diversity (Frankham 1996;
Wagner and Fortin 2013; Wright 1931). Regardless of the importance of genetic diversity
on maintaining population fitness and reducing extinction risk, very few landscape genet-
ics studies consider the effects of site-based, local variables on intrapopulational genetic
diversity (DiLeo and Wagner 2016). In river networks, for example, a broad variety of taxa
show a pattern of downstream local accumulation of genetic diversity due to biased gene
flow (Downstream Increase in Intraspecific Genetic Diversity—DIGD; Paz-Vinas et al.
2015). Additionally, local population persistence can be negatively affected by intense
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human harvesting and inter-annual water level fluctuations, and positively affected by at-
site suitable climate and productivity conditions (Allendorf et al. 2008; Kovach et al. 2015;
Murphy et al. 2010; Ouellet-Cauchon et al. 2014).

Comparative studies are essential to elucidate how intrinsic ecological differences
among species can generate distinct effects of local and connectivity landscape factors
on genetic patterns (Reid et al. 2017). For instance, differences in dispersal ability among
closely related species correlate with distinct genetic patterns (Steele et al. 2009). Low-
dispersal species, compared to species with high-dispersal capacities, often exhibit higher
genetic divergence, lower genetic diversity and more pronounced spatial genetic structure
(Gomez-Uchida et al. 2009; Richardson 2012; Steele et al. 2009). This may lead to stronger
genetic response to local and connectivity factors for poor-dispersers due to increased drift
and lower gene flow among localities (Gomez-Uchida et al. 2009). These comparisons are
particularly useful in guiding management strategies for threatened organisms inhabit-
ing heterogeneous landscapes (Reid et al. 2017), as it is the case of aquatic Amazonian
vertebrates.

The Amazon basin is the largest hydrographic basin in the world, composed of an envi-
ronmentally heterogeneous system formed by rivers, streams and floodplain forests with
varying geomorphology, flood pulse dynamism and physical-chemical water properties
(Sioli 1984). This complexity influences the movement, mating and survival of organisms,
shaping population genetic patterns of several aquatic vertebrates (Beheregaray et al. 2015;
De Thoisy et al. 2006; Gravena et al. 2015; Pearse et al. 2006). However, to our knowledge,
no study has attempted to use a spatially explicit model-based framework to test which
Amazon basin riverscape factors may be behind the observed genetic patterns. Not only
for Amazon basin, this type of approach is necessary to help develop a robust riverscape
genetics framework, which will improve our understanding of the relationships between
freshwater organisms and their environment (Davis et al. 2018). Therefore, we assessed
the importance of local and connectivity variables in shaping the spatial genetic variation
of two Amazon River turtle species differing in their dispersal abilities and habitat prefer-
ences. Because river turtles live in the land—water interface and have variable life history
traits influenced by landscape factors, they are appropriate models to understand broader
patterns and processes taking place at the Amazon basin.

Here we tested the hypotheses that (1) connectivity factors that reduce gene flow are
related to genetic differentiation for a low-dispersal species (Podocnemis erythrocephala
Spix, 1824), but not for a high-dispersal species (Podocnemis sextuberculata Cornalia,
1849); and (2) local factors are related to intraspecific genetic diversity of both species, but
leave a stronger effect on the diversity of the low-dispersal species (P. erythrocephala). For
this, we used biologically meaningful local variables representing hypotheses of climate
and productivity, instability of inter-annual water levels, hunting pressure and downstream
increase in intraspecific genetic diversity (Table 1). These local variables are hypothesized
to reduce or increase effective population sizes (Ne), consequently affecting the rate of
genetic drift and diversity of populations. The connectivity variables we used represent
hypotheses of isolation by distance (IBD), isolation by resistance (IBR) and isolation by
barrier (IBB) (Table 1). The IBR models include resistance offered by different river types,
by climatically unsuitable habitats (current and historical) and by slope. These connectivity
variables are hypothesized to restrict dispersal and mating patterns among localities, reduc-
ing gene flow and increasing genetic differentiation among populations.
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Materials and methods
Study species

Podocnemis erythrocephala Spix, 1824 (Red-headed Amazon River Turtle) is the smallest
Podocnemis species occurring in the Amazon basin, reaching 32.2 cm of carapace length.
It is also the least broadly distributed, occurring in Brazil, Colombia and Venezuela, mainly
in blackwater rivers and their tributaries, but also in clearwater lakes and rivers (Ferrara
et al. 2017). The second smallest species, reaching 34 cm of carapace length, Podocnemis
sextuberculata Cornalia, 1849 (Six-tubercled Amazon River Turtle), is broadly distributed
in the Amazon River drainage in Peru, Colombia and Brazil, mainly in large whitewater
and clearwater rivers (Ferrara et al. 2017). The geographic distribution of the two species
overlap in a few regions in Amazon River tributaries. Podocnemis sextuberculata is a high-
dispersal species whose females migrate long distances to nest in large groups in broad
sandy beaches (Vogt 2008), with records of up to 60 km moved by a female in a year
(Fachin-Teran et al. 2006). Podocnemis erythrocephala has lower dispersal potential, being
commonly found in smaller streams and lakes instead of main river channels, and females
nest alone or in small groups in sandy shrub lands or forests (Mittermeier et al. 2015).

Study region and genetic sampling

We used a total of 609 samples from 14 localities for P. erythrocephala and 20 locali-
ties for P. sextuberculata (Fig. 1; Appendix S1 in Supplementary Information), cover-
ing a large portion of their ranges. We used the mtDNA control region (CR) as molecu-
lar marker for both species due to the high polymorphism reported for the genus (Pearse
et al. 2006; Santos et al. 2016; Viana et al. 2017), the broad sampling scale and the
potential historical effects of predictor variables. For P. erythrocephala, we used 273
sequences (503 bp), from which 246 were from the work of Santos et al. (2016; GenBank
KY702009-KY702254). We sequenced 27 additional samples (5-BCL, 8-JAU, 13-JUR
and 14-PAR; Fig. la; Appendix S1; GenBank KY713319-KY713345) following the
same procedures. For P. sextuberculata, we used 336 sequences (605 bp), from which 319
were from the recent work of Viana et al. (2017; GenBank KY702255-KY702573). We
sequenced an additional 17 samples (6-IPX, 10-PPP and 12-CAP; Fig. 1b; Appendix S1;
GenBank KY713302-KY713318) following the same procedures. The additional samples
were collected under collecting permits 44832-1 and 5119-1 issued by the Instituto Chico
Mendes de Conservacgdo da Biodiversidade (ICMBio).

Genetic diversity and differentiation

To describe the genealogical relationships among localities we constructed a haplotype
network for each species using HAPLOVIEWER (Salzburger et al. 2011) using maximum like-
lihood phylogenetic trees estimated in RAXxML (Stamatakis 2006) with GTRGAMMA
model. To assess patterns of population structure at the broad scale for each species we
inferred the most probable number of genetic clusters (K) and individual’s assignment to
each cluster with a Bayesian analysis of population admixture implemented in BAPs v. 6.0
(Corander et al. 2006). For the mixture analysis we ran five independent simulations for
each value of K ranging from 1 to the maximum number of localities of each species. We
then ran an admixture analysis with 100 interactions, 100 individuals of reference and 10
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Fig. 1 Sampling localities for Podocnemis erythrocephala (a) and Podocnemis sextuberculata (b). Pie
charts represent percentage of individuals belonging to biological clusters identified by Bayesian analy-
sis of population structure in BAPS. BAPS graphs are depicted in Appendix S5 Figures S5.17 and S5.18.
Background masks in maps correspond to potential geographic distribution of each species, as estimated by
Fagundes et al. (2015). Turtle illustrations: Karl Mokross
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interactions to evaluate the individuals. To characterize intraspecific genetic differentiation
among localities we performed an analysis of molecular variance (AMOVA) (Excoffier
et al. 1992) using pairwise @ST between sampling sites using the software ARLEQUIN V.
3.5.2.2 (Excoffier and Lischer 2010), testing for significance by randomization with 1000
permutations.

We calculated for each sampled locality two intraspecific genetic diversity indices
(response variables): haplotypic diversity (Hd; Nei 1987) and nucleotide diversity (m; Nei
1987), in DNASP v.5.10.1 (Librado and Rozas 2009). We also estimated pairwise ¢ST
between sampling sites using the software ARLEQUIN V. 3.5.2.2 (Excoffier and Lischer 2010),
testing for significance by randomization with 1000 permutations. We used the diversity
metrics as response variable for node-level analysis and the pairwise @ST for the link-level
analysis.

Landscape data

We describe the hypotheses and mechanisms linking the local (nodes) and connectivity
(links) factors to the expected effects on, respectively, diversity and differentiation indi-
ces of populations in Table 1. We collected several landscape metrics for each analytical
approach (nodes and links) in order to represent non-mutually exclusive hypotheses that
may explain diversity and differentiation patterns for the species.

Node-level local variables

To test the energy availability hypothesis, we used mean Net Primary Productivity (NPP
2000-2015; Appendix S2 Figure S2.1) as a proxy of available resources in each locality
sampled. For each locality, we obtained the mean NPP in a buffer of 5 km of radius for P.
erythrocephala and of 12 km of radius for P. sextuberculata. We selected these buffer radii
based on mark-and-recapture and movement studies describing mean linear distances for
individuals of each species (Bernhard 2010; Fachin-Teran et al. 2006).

To test the environmental stability hypotheses, we used Ecological Niche Modeling
(ENM) to predict the climatic suitability for each species. We used a total of 158 occur-
rence records for P. erythrocephala and 329 for P. sextuberculata. These occurrences were
compiled by Fagundes et al. (2015) and include data from literature review, Brazilian sci-
entific collections and museum specimens, and unpublished data from turtle specialists.
We built models using the maximum entropy algorithm, MAXENT, implemented in the
R package ‘dismo’ (Hijmans et al. 2015). To construct the models we used seven biocli-
matic variables (BIO1, BIO4, BIO10, BIO11, BIO 12, BIO15, BIO16 AND BIO17) from
the WorldClim database (http://www.worldclim.org) interpolated to 1 km resolution (Hij-
mans et al. 2005), removing highly correlated variables (r >0.8). We produced 20 replicate
model runs to statistically evaluate the models, using 75% of the records for training and
25% for testing. We evaluated model performance using the area under the curve (AUC) of
the receiver operating characteristic (ROC) plot, which ranges from 0.5 (random predic-
tion) to 1 (maximum prediction). The output raster layers have an index of suitability for
each cell ranging from O to 1, being low values indicative of unsuitable conditions for spe-
cies occurrence and high values indicative of suitable conditions. We used the projection
to present conditions (Appendix S2 Figure S2.2a, b) as the variable for current environ-
mental stability hypothesis. In addition, to enable a continuous view of historical climatic
suitability, we projected the models to 62 climatic reconstructions covering the last 120
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thousand years (kyr) at small time intervals (14 kyr) using the Hadley Centre Climate
model (HadCM3; Carnaval et al. 2014). We calculated the mean value of suitability for the
62 layers of time and used the resulting mean raster layer (Appendix S2 Figure S2.2¢.d) as
the variable of historical environmental stability hypothesis.

To test the high variability of extreme water levels hypotheses, we used two raster
maps created by Silva-Junior (2015) representing extremes of river flows (Appendix S2
Figures S2.3-S2.4). The rasters were generated from the coefficient of variation of high
(CVmax—7Variability of high river flow hypothesis) and low (CVmin—YVariability of low
river flow hypothesis) river flows for 5 thousand points in Amazon basin for the period of
1998-2009.

We divided hunting pressure in two hypotheses: subsistence and commercial hunting
pressures. To test for the subsistence consumption of turtles by rural/riverine human vil-
lages, we used the Heatmap plugin in QGIS to create a kernel-density map of villages in
the sampling region from a shapefile with geographic points of villages and rural/riverine
settlements. This generated a raster (heatmap) in which the “hot” spots have a high den-
sity of villages and the “cold” spots have low density of settlements (Appendix S2 Figure
S2.5). We used the kernel values of each sampling locality as a surrogate for subsistence
hunting pressure hypothesis. In addition, because urban centers are the final destination for
illegally caught turtles (Pantoja-Lima et al. 2014), we measured for each sampling locality
the distance (by riverway) to the closest urban center (Appendix S2 Figure S2.6) as a sur-
rogate for commercial hunting pressure hypothesis.

Finally, to test for the hypothesis of Downstream Increase in Intraspecific Genetic
Diversity (DIGD), we defined the mouth of Amazon River as the ultimate downstream
point and extracted for each locality its riverway distance to Amazon River mouth (Appen-
dix S2 Figure S2.7).

Link-level connectivity variables

To test the hypothesis of isolation by distance (IBD) we measured the river distance
between localities using the R package ‘gdistance’ (van Etten 2012) and a spatial-autocor-
relation analysis was performed.

For the links analytical level we used resistance models (isolation by resistance, IBR),
a novel approach for riverscape genetics that can increase our understanding of gene flow
patterns as it tests specifically for migration complexity and resistance between popula-
tions. The least-cost paths (LCPs) are calculated by searching for the path that minimizes
the total cumulative cost (or resistance) between two points (Wang et al. 2009). The riv-
erscape genetics approach differs from landscape genetics (terrestrial habitats) in that
for species using exclusively river ways to move, the only path possible is the river path.
Therefore, the LCPs between two localities will always be the same regardless of the vari-
able under consideration. However, the cost values of each pixel (and therefore the accu-
mulated-cost of LCP) will be distinct for different variables. To characterize isolation by
resistance (IBR) we used slope, river types (water types) and climatic suitability (Table 1).

We calculated LCPs of average upstream slope (Appendix S2 Figure S2.8; Domisch
et al. 2015) between localities as a surrogate for the presence of topographic barriers (e.g.,
rapids or waterfalls) or increased topographic resistance to turtles’ movement.

The rivers in Amazon basin are classified in three types (black, white and clear waters;
Appendix S2 Figure S2.9) based on different origins and physical-chemical properties of
their waters (Sioli 1984). Since there is a lack of biological data on movement preference
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related to water types, we used expert parameterization of resistance values (Zeller et al.
2012). We sent a questionnaire (Appendix S3) to six Amazon turtle experts, asking them
to assign different costs to each water type representing how costly they are to the move-
ment of each species. The cost values would range from 1 (low or no cost to animal
movement) to 5 (high cost or barrier to movement). Because the responses varied among
experts (Appendix S3), we used the mean cost value of their opinions to calculate the LCPs
between localities.

To assess resistance to movement offered from present and past climatic unsuitable hab-
itats we clipped the historical and current ENM maps generated (see node-level local vari-
ables section) to the river courses. We used the reverse of suitability values (1—suitability)
to assign resistances to each pixel in the river network for each species, because places with
lower suitability should represent higher resistance to the movement (Wang et al. 2013).
The resulting raster maps (Appendix S2 Figures S2.10-S2.13) have resistance values rang-
ing from 0 (no resistance to species movement) to 1 (complete resistance). We then calcu-
lated LCPs between localities for historical and current resistance imposed by unsuitable
habitats for each species.

Additionally, the Amazon River was proposed as a potential barrier to the dispersal of P.
erythrocephala (Santos et al. 2016) because of its large extension and whitewaters. There-
fore, we attributed binary codes for localities from the same (0) or opposite (1) sides of
Amazon River to test for isolation by barrier (IBB), only for P. erythrocephala.

Landscape genetics analyses

Because the genetic metrics used here can be affected by sampling sizes (Goodall-Cope-
stake et al. 2012), we only used localities for which we had at least 10 individuals sampled
(N'>10). This reduced our number of sites from 14 to 11 for P. erythrocephala and from
20 to 17 for P. sextuberculata.

For node-level analysis, we modeled the genetic response variables (Hd and ) in rela-
tion to the predictor landscape variables using generalized linear models (GLMs). To avoid
multicollinearity we only included non-correlated predictor variables in mixed models
(r<0.6; Appendix S4 Table S4.3). We also tested for the presence of spatial autocorrela-
tion in the response variables to ensure the relationships between genetics and landscape
are not an artifact of spatial structure (Wagner and Fortin 2016). We built GLMs com-
prising all combinations of one to two predictors (except when they were collinear) and
included a null model without predictors. To perform model selection, we calculated AIC
corrected for small sample sizes (AICc) and Akaike’s weight of evidence (wAICc) as the
relative contribution of models (Burnham and Anderson 2003). We considered models
with AAIC (the difference between each model and the best model) <2 as equally plausible
to explain the observed pattern. To run the AIC-based analyses, we used the R package
‘AlCcmodavg’ (Mazerolle and Mazerolle 2016).

To assess the importance of each landscape factor in link-level analysis, we controlled
for the geographic distance in the LCPs (IBR models) by dividing the accumulated-costs
of LCPs by the riverway distance among pairs of localities. By doing so we are represent-
ing in each hypothesis solely the environmental dissimilarity of resistance among locali-
ties, despite longer or shorter geographic distances (Fig. 2). After this control, all correla-
tions between predictor matrices (IBD, IBR/distance and IBB) were <0.7 (Appendix S4
Table S4.4) enabling the test of non-mutually exclusive hypotheses in multiple regression
models (Wagner and Fortin 2016). To model genetic differentiation (¢pST) in relation to
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Pops. _Riverway River color Slope A
distance (km) | cp LCP/dist LCP LCP/dist
1-2 20 100 5 1000 50
1-3 10 10 1 1000 100
1-4 50 100 2 2500 50
1-5 100 100 1 1000 10

Fig.2 Hypothetical scenario illustrating how to represent more accurately the environmental dissimilar-
ity among localities in isolation by resistance (IBR) models. Gray colors indicate resistance by river color
(water types): light gray—low cost (1), medium gray—medium cost (2), and dark gray—high cost (5).
Slope symbols indicate resistance by upstream slope between localities: large symbols—high slope (100),
small symbols—medium slope (50), and absence of symbols—Ilow slope (10). The hypothetical grid has
cells with 1 km of resolution. Due to geographic distances being too large or too small, three paths would
receive the same cost distance (LCP) for river color (1-2, 1-4 and 1-5) and for slope (1-2, 1-3, 1-5)
despite the large environmental differences among them. By dividing by riverway distance (/dist), we are
able to separate the effects of geography and environment. We can therefore obtain values (LCP/dist) that
represent the environmental dissimilarity of pathways between pairs of localities and assess the sole effect
of that variable in our response variable (genetic differentiation), despite geographical distance

geographic and environmental dissimilarities we applied a generalized dissimilarity mod-
elling (GDM). GDM is a nonlinear extension of permutational matrix regression that
models pairwise biological dissimilarity between sites (Ferrier et al. 2007). The two main
advantages of using GDM in a landscape genetics approach are its particular suitability for
genetic data (pairwise differentiation) and the possibility of using resistance/LCP models
along with true measures of geographic distances (Fitzpatrick and Keller 2015). We there-
fore applied GDM, including six predictor variables for P. erythrocephala and five for P.
sextuberculata, using the R package ‘gdm’ (Manion et al. 2016). We assessed the relation-
ship among ST and each predictor by examining the response curves generated for vari-
ables for which I-spline basis functions could be calculated (i.e., presented non-zero coef-
ficients). In these response curves, the maximum height represents the relative importance
of variables retained in the model and the slopes indicate the rate of change in the response
variable along the environmental gradient concerned (Ferrier et al. 2007). We also per-
formed a test of variable importance using an iterative process that adds and removes vari-
ables to determine significance by computing the difference in deviance explained by a
model with and a model without the variable concerned (Fitzpatrick et al. 2013). Although
model selection would be the best approach to compare node and link-level analyses,
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because the residuals of matrix regressions are not independent, information-theoretic indi-
ces commonly used for model selection (AIC, AICc or BIC) are not applicable to distance
matrices (Wagner and Fortin 2016).

Results
Genetic diversity and differentiation

Our data set for P. erythrocephala (N=273) included 38 polymorphic sites, resulting in
48 haplotypes of which 34 were observed only once. For P. sextuberculata (N=336), we
found 42 polymorphic sites and 61 haplotypes of which 40 were observed only once. Both
species have a high proportion of shared haplotypes among localities (Haplotype networks
in Appendix S5). We recovered overall moderate haplotype diversity for both species (P.
erythrocephala: Hd=0.627; P. sextuberculata: Hd=0.776; Appendix S1), with localities
values ranging from 0.116 to 0.813 for P. erythrocephala and from 0.143 to 0.911 for P.
sextuberculata. We found comparable nucleotide diversity (Appendix S1) in relation to
other studies using control region of mtDNA for Podocnemis species (0.00006 for P. lew-
yana, Vargas-Ramirez et al. 2012; 0.00256 for P. expansa, Pearse et al. 2006), 0.00234 for
P. erythrocephala (range of 0.00023-0.00316) and 0.00458 for P. sextuberculata (range of
0.00024 to 0.00581).

The analysis of population admixture implemented in BAPS recovered three genetic
clusters (Ln likelihood=—713.0684) for P. erythrocephala and four genetic clusters (Ln
likelihood = —1007.2423) for P. sextuberculata (Fig. 1; BAPS graphs in Appendix S5 Figs
S5.17 and S5.18). The clustering of individuals for both species did not correspond to geo-
graphical locations, except for the clusters including mainly individuals from Sdo Gabriel
da Cachoeira (1—SGC) for P. erythrocephala and from Xingu River (20—XIN) for P.
sextuberculata. The populations (i.e., localities) were significantly differentiated for both
species (P. erythrocephala: ST =0.34060, p<0.0001; P. sextuberculata: ST =0.45353,
p<0.0001; AMOVA Table S5.7 at Appendix S5), with pairwise @ST between localities
ranging from O to 0.898 for P. erythrocephala and from 0 to 0.937 for P. sextuberculata
(full ST Tables S5.5 and S5.6 at Appendix S5).

Despite the fact that we added samples from four new localities for each species to the
data set of previous studies (Santos et al. 2016; Viana et al. 2017), we recovered very simi-
lar results for measures of genetic diversity and differentiation as them.

Landscape data
Ecological niche modelling (ENM)

The climatic variables included in the final ENMs for both species were: temperature
seasonality (BIO4), mean temperature of warmest quarter (BIO10), annual precipitation
(BIO12), precipitation seasonality (BIO15) and precipitation of wettest quarter (BIO16).
The average training AUC for the replicate runs was high for both species (P. erythroceph-
ala: 0.969, SD 0.004; P. sextuberculata: 0.933, SD 0.006), indicating high model fit. The
estimated mean historical suitability (from 0 to 120 kya) for the species indicates that, in
average, past climatic conditions were mostly unsuitable for species occurrence (Appendix
S2 Figure S2.2).

@ Springer



Evolutionary Ecology

Table 2 Model selection for relationship of genetic diversity of Podocnemis erythrocephala and Podocne-
mis sextuberculata and local riverscape predictors. Best models selected based on AAICc <2 are bolded

Hd T

Species Models K A AlCc wAICc K A AlICc wAICc

P. erythrocephala CVmax +distCITY 4 0.85 0.14 4 0 0.34
distCITY 3 0.35 0.18 3 1.06 0.2
NULL 2 0 0.22 2 1.96 0.13

P. sextuberculata NPP 3 1.89 0.08 3 0 0.19
NPP + villages 4 2.44 0.06 4 0.7 0.14
distMOUTH 3 0 0.21 3 1.22 0.11
NPP + suit_past 4 4.49 0.02 4 1.87 0.08
villages 4+ distMOUTH 4 0.64 0.15 4 2.57 0.05
suit_past+distMOUTH 4 1.79 0.09 4 3.6 0.03

Hd haplotype diversity; = nucleotide diversity; K number of parameters estimated for each model; AAICc
Akaike values corrected for small samples; wAICc Akaike’s weight of evidence; CVmax coefficient of vari-
ation of interannual high river flow; distCITY distance to nearest urban center; NULL null model represent-
ing the absence of an effect; NPP net primary productivity; villages kernel density of human villages; dist-
MOUTH distance from Amazon River mouth; suit_past mean historical suitability

Landscape genetics analyses
Node-level analysis

For P. erythrocephala, the null model could not be rejected (AAICc < 2; Table 2). Although
not differentiated from the null model, the two best models explaining haplotype and nucle-
otide diversity of P. erythrocephala are the distance to the nearest urban center (distCITY)
and a combined effect of this distance and the coefficient of variation of high river flow
(CVmax). The relationships among these predictor variables and response variables follow
our expectations: increased genetic diversity on localities farther from cities (positive rela-
tionship with distCITY) and on localities with lower variability in maximum flows (nega-
tive relationship with CVmax). For P. sextuberculata, six competing models explained the
two diversity metrics (Table 2): the site productivity (NPP) alone, the distance to Ama-
zon River mouth (distMOUTH) alone, and the combined effects of each of these variables
with density of rural human communities (NPP+ villages and distMOUTH + villages)
and historical climatic suitability (NPP 4+ suit_past and distMOUTH + suit_past). The two
most important variables, NPP and distMOUTH, are highly correlated (r=0.93; p <0.001),
being difficult to determine which of the two influences genetic diversity. In addition, rela-
tionships between distMOUTH, villages and suit_past with genetic diversity are opposed
to the expected: increased genetic diversity on upstream localities (positive relationship
with distMOUTH; Fig. 3b), on localities near higher density of human settlements (posi-
tive relationship with villages; Fig. 3c), and on localities with lower climatic suitability
(negative relationship with suit_past; Fig. 3d). The relationship for NPP was as expected:
higher genetic diversity at more productive sites (higher NPP; Fig. 3a). The cumulative
contribution (wAICc) of the models to the observed pattern was moderate, 0.53 for Hd
and 0.52 for = (Table 2). Full tables of AIC models are available at Appendix S6 Tables
S6.8-S6.11.
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Fig.3 Relationship among nucleotide diversity (n) of Podocnemis sextuberculata and local variables
included in best models selected with AICc: NPP (a), distMOUTH (b), villages (¢) and suit_past (d). Rela-
tionships of genetic diversity with distMOUTH, villages and suit_past are opposed to the expected. NPP:
Net Primary Productivity; distMOUTH: distance (km) from Amazon River mouth; villages: Kernel density
of riverine and rural human communities locations; suit_past: historical climatic suitability

Link-level analysis

The full GDM model explained 20.44% of the deviance in @ST turnover for P. erythro-
cephala and derived I-spline basis functions for four of the six variables (Table 3; Fig. 4).
Summing the coefficients of I-spline basis functions as a measure of relative variable
importance (i.e., height of each curve; Fitzpatrick and Keller 2015), the main predictor for
genetic differentiation of P. erythrocephala was the Amazon River (0.387), followed by
resistance from current climatic suitability (0.189), resistance from historical climatic suit-
ability (0.136) and riverway distance (0.110). For P. sextuberculata the full GDM model
explained 6.49% of the deviance in @ST turnover and derived I-splines for three of five
variables (Table 3; Fig. 5). The most important variable to predict genetic differentiation of
P. sextuberculata was the resistance from river color (0.953), followed by resistance from
current climatic suitability (0.226) and riverway distance (0.187).
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Table 3 Model fit and relative importance of connectivity predictor variables (representing IBD (1), IBR
(2, 3, 4, and 5) and IBB (6) hypotheses) for link-level GDM analyses of genetic differentiation of Podocne-
mis erythrocephala and Podocnemis sextuberculata

Best model P. erythrocephala P. sextuberculata
Model 14+445+6 14244

Model deviance 20.12 57.07

Percent deviance explained 20.45 6.49

p Value 0.12 0.11

Variable importance

P. erythrocephala

P. sextuberculata

1. Distance 0.11 0187
2. River type resistance - 0.953
3. Slope resistance - _

4. Current suitability resistance 0.189 0.226
5. Historical suitability resistance 0.136 -

6. Amazon River 0.387 NA

In “Model” the numbers are relative to the variables (below) included in that model. Variable importance is
the sum of I-splines coefficients. Dashes indicate zero coefficients of I-splines. NA not assessed. No variable
was significant after 1000 permutations

Although the response curves and I-splines coefficients can elucidate the most impor-
tant variables to ST turnover, we detected no significance for models or variables in terms
of variable importance testing by permutations (Table 3). The correction of IBR models
by geographic distance allowed us to disentangle the effects of riverway distance and envi-
ronmental resistance, being IBD only retained as a potential predictor after this correction.

Discussion

Here we investigated the influence of local and connectivity factors on genetic patterns of
two closely related river turtle species with different dispersal abilities. We start discussing
the potential drawbacks implied in using a single mtDNA locus. Taking that into consid-
eration, we further discuss the distinct patterns found for each species within this compara-
tive framework, highlighting ecological differences among them. We found relationships
between spatial genetic patterns and environmental variables potentially relevant for other
freshwater vertebrates in megadiverse Tropical river systems. Our results demonstrate the
importance of assessing biologically meaningful variables in riverine systems, including
at-site factors. We also show the usefulness of adding resistance factors to barrier and dis-
tance hypotheses often tested in riverscape genetics studies.

Genetic marker caveat

The mitochondrial DNA (mtDNA) has been proven useful to identify influences of land-
scape features on the genetic patterns of co-distributed species, even when there are no
visually apparent spatial genetic patterns (Liggins et al. 2016; Mitchell et al. 2015; Thomaz
et al. 2015). This marker is particularly well suited to investigate population-level historical
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Fig.4 Generalized dissimilarity model-fitted I-splines (panels a—d) for connectivity variables—for which
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effects of landscape factors across broad spatial scales (Murphy and Evans 2011), such
as our study. In addition to these benefits, measures of gene flow from mtDNA repre-
sent migration rates of a single parent and should be interpreted as such. Although most
markers can be used to measure genetic diversity and differentiation, multi-locus geno-
typic markers, for example Microsatellites (usats) and Single Nucleotide Polymorphisms
(SNPs), can measure fine temporal and spatial scales and have higher statistical power than
less variable markers such as mtDNA (Storfer et al. 2010). These disadvantages of mtDNA
might have limited the predictive power of our analyses because the available measures for
response variables used here are rather contemporary and not necessarily reflect historical
processes as we intended. Also, markers with higher mutation rates (usats or SNPs) could
have given more detailed insight. However, these markers remain to be developed and
tested for P. erythrocephala and P. sextuberculata, especially in such a broad populational
and geographic sampling.

Influence of local factors on genetic diversity

Against our expectations we only find evidence for the influence of local factors on intra-
populational genetic diversity of the high-dispersal species (Podocnemis sextuberculata).
For P. erythrocephala, the best models were not preferred over the null model. This might
be explained by a higher proportion of shared haplotypes for P. sextuberculata than for P.
erythrocephala. For P. sextuberculata, the density of rural human settlements (villages)
was included in the second best models for haplotype and nucleotide diversity, com-
bined with distance from the Amazon River mouth (distMOUTH) and primary produc-
tivity (NPP), respectively. However, the relationship is opposed to predicted, as intraspe-
cific genetic diversity was higher in places with higher density of human communities.
This is rather unexpected given historical use of turtles since the 18" century and high
rates of consumption of P. sextuberculata by villagers reported along the Amazon basin
(Pantoja-Lima et al. 2014; Smith 1979). Aside from direct consumption human settlements
also often represent habitat loss for species (Turtle Conservation Fund 2002). Overall,
human rural communities may pose a threat to Podocnemis species if exploitation occurs
in an unsustainable manner, causing population declines (Bernardes et al. 2014; Conway-
Goémez 2007) and ultimately affecting genetic patterns (Allendorf et al. 2008). Our results
of higher genetic diversity where there is more human villages may be a consequence of
human settlements often establishing in productive sites offering protein resources, where
people hunt in proximities (Peres 2000). It may also be that density of villages is not a
good proxy of turtle consumption, since feeding habits and consumption rates vary among
places (Pezzuti et al. 2010). The model NPP + villages supports the hypothesis that human
villages may be established in more productive sites, which in turn are expected to har-
bor larger population sizes of P. sextuberculata, therefore maintaining higher nucleotide
diversity over time where productivity and number of villages are higher. Yet, we need to
be cautious when interpreting effects of recent events on mtDNA genetic diversity (Wang
2010) because while population declines due to harvesting in turtles occur over years,
genetic variation is lost over generations (Marsack and Swanson 2009). In addition to that,
mtDNA has a bias towards registering historical events compared to other more polymor-
phic molecular markers (see above).

While NPP is the most relevant variable explaining nucleotide diversity of P. sextubercu-
lata, the best model determining haplotype diversity is distance from Amazon River mouth
(distMOUTH). NPP and distMOUTH are highly correlated, probably due to a west—east
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gradient of decreasing primary productivity (Malhi et al. 2004) and distance to Amazon
River mouth. For distMOUTH we found a downstream decrease in genetic diversity of
P. sextuberculata, as opposed to the expected pattern of Downstream Increase in Genetic
Diversity (DIGD). This reverse pattern may occur because floodplains and wetlands, which
serve as feeding and movement habitat for P. sextuberculata (Fachin-Teran and Vogt 2014),
are more abundant in western compared to eastern portions of Amazon basin (Junk et al.
2011). Also, upstream sites (i.e., mostly western localities) are less affected by deforesta-
tion, urbanization, and other anthropogenic alterations of habitats widespread on eastern
localities closer to Amazon River mouth. Hence, these conditions, along with productivity
of upstream sites, could harbor larger effective population sizes and larger genetic diversity
in P. sextuberculata across the basin. Contrary to our expectations, we find more influence
of local variables on the genetic diversity of the high-dispersal species, P. sextuberculata,
than on P. erythrocephala (low-dispersal ability). However, several life-history traits other
than dispersal (e.g., generation time and habitat specialization) also influence intraspecific
genetic diversity (Ellegren and Galtier 2016). We cannot discuss whether generation time
would influence the genetic-landscape relationships, since this information is unknown for
Podocnemis species. Considering that both species have similar body sizes, we assume
they also have similar generation time and mutation rates (Martin and Palumbi 1993) and
thus we believe this trait cannot explain the different responses showed by the two species.
Nest site requirements is a trait that could also explain the differences. P. sextuberculata
disperses large distances to nest, its nests are only found in high points of sandy beaches
(Vogt 2008). On the other hand, P. erythrocephala, nests in a wider variety of substrates,
including sandy beaches, shrub lands (known as campinas and campinaranas) and savan-
nas (Vogt 2008). This wider variety of nesting substrates may therefore reduce the influ-
ence of local variables on recruitment and population sizes of P. erythrocephala and coun-
terbalance its low-dispersal ability.

Influence of connectivity factors on genetic differentiation

As expected, connectivity variables explain a higher percentage of genetic differentiation
for the low-dispersal species (P. erythrocephala). The GDMs showed that 20% of @ST
turnover in P. erythrocephala is explained by connectivity variables, while for P. sextu-
berculata this value is only 6%. The percent deviance explained is used as a measure of
model fit in GDM (Fitzpatrick and Keller 2015). However, the variable importance permu-
tation test did not recover significance for any variable or model. This outcome could be a
result of temporal mismatch between genetic and landscape variables or of long lifespan
of turtles. First, temporal mismatch between landscape effects and genetic responses is a
general criticism to landscape genetic studies, especially when using a historical marker to
assess contemporary landscape changes (Epps and Keyghobadi 2015). Here we employed
connectivity variables that likely represent the landscape configuration across several past
decades and millennia. Accordingly, we believe their effect is historical and could have
been reinforcing potential gene flow restrictions until recent times. Therefore, the lack of
significance was probably not an artifact of temporal mismatch between our predictor and
response variables. Second, turtles, as long-lived organisms with delayed maturation time,
are expected to have longer time to manifest changes in genetic patterns (Kuo and Janzen
2004; Marsack and Swanson 2009). But overlapping generations and multiple paternity of
highly harvested Podocnemis species (Fantin et al. 2010, 2015) may be buffering poten-
tial bottlenecks from past centuries (Escalona et al. 2009; Pearse et al. 2006). In addition,
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studies with turtles and other long-lived organisms detected effects of landscape factors on
genetic divergence within few generations (Epps et al. 2005; Moore et al. 2008; Reid et al.
2017). Thus, lack of significant relationship between genetic differentiation and connectiv-
ity factors may be an evidence of high gene flow, but also a consequence of several other
factors affecting the rate at which neutral genetic differentiation reach equilibrium, such as
effective population sizes and population dynamics (Epps and Keyghobadi 2015).

Despite potential limitations of mtDNA already mentioned, the lack of significance for
relationships among connectivity and genetic differentiation is an indication that connec-
tivity variables are less important in shaping genetic patterns of Amazon River turtles than
local variables. Nevertheless, the height of spline curves can still represent a measure of the
importance of a variable in influencing genetic differentiation in these species. Our GDM
analyses fitted I-spline functions for four connectivity variables for P. erythrocephala and
three for P. sextuberculata. The asymptotic shapes of these curves demonstrate the useful-
ness of GDM to model non-linear relationships commonly found in link-level landscape
genetics analyses (Spear et al. 2016).

Amazon River was the most important variable explaining genetic differentiation of P.
erythrocephala. The role of Amazon River as a potential barrier to dispersal of P. eryth-
rocephala was suggested in a previous population genetics study (Santos et al. 2016). By
adding samples from two localities on the right margin of Amazon River to their dataset
and employing a riverscape genetics approach, we corroborate the idea that the river is
the most important predictor of genetic differentiation, at least among the set of variables
here tested. Surprisingly, resistance offered by different water types was not important in
explaining the genetic differentiation of P. erythrocephala, which is restricted to black
and clear waters. Therefore, we cannot accurately state whether Amazon River works as
a barrier due to its large width (Hayes and Sewlal 2004), its white waters (Beheregaray
et al. 2015) or a historical process of river dynamics. On the other hand, resistance from
water type was the most important variable for P. sextuberculata, which can be found in all
three types of water. This suggests that populations of P. sextuberculata are increasingly
divergent along paths containing costlier water types, despite total distance to be travelled
among sites. However, due to low percent of variation explained by GDM (6%) and lack of
significance, this pattern remains only as a topic for future investigation.

For both species, IBR models explained more genetic differentiation turnover than IBD.
In Amazon basin, riverway distance has often a minor or no role in explaining genetic
differentiation of aquatic vertebrates, potentially because of high connectivity offered by
flooded habitats (Cantanhede et al. 2005; Hrbek et al. 2005; Pearse et al. 2006). Our results
emphasize the utility of adding resistance-based (IBR) models to classical IBD and IBB
models when studying riverscape genetics. We also reinforce the usefulness of expert’s
opinion to parameterize LCPs in systems for which empirical resistance evidence is lack-
ing (Zeller et al. 2012). In addition, dividing cost-weighted distances of each variable by
riverway distance allowed us to assess the accumulative cost of traversing costly environ-
ments despite the total distance to be travelled. This control by distance allowed us to dis-
entangle IBR models from IBD and test whether distance by itself or resistance by itself
increased genetic differentiation. We suggest this approach when dealing with species that
move exclusively through linear habitats (i.e., rivers), for which there is only one path pos-
sible between populations, but environmental dissimilarity may be more determinant to
dispersal than distance.

The weak relationship among genetic diversity and climatic suitability and the lack of
relationship among genetic differentiation and resistance by climatic unsuitability seen here
corroborate the idea that climatic stability is overall less important in structuring genetic
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variation in aquatic organisms than in terrestrial species, as suggested by Thomaz et al.
(2015). Thomaz et al. (2015) found that palaeodrainages influence the genetic patterns of
a freshwater fish dependent upon forest habitat, while habitat stability (as measured by cli-
matic suitability) do not. Similarly, our results highlight that other aspects of the riverscape
are more important to both genetic diversity and genetic differentiation patterns for river
turtles.

Conclusions and perspectives

Overall, our study shows that despite major attention is often given to connectivity vari-
ables, local variables can be important factors correlated to genetic diversity patterns, even
when dealing with high-dispersal species without apparent discrete genetic structure. We
assessed variables biologically relevant for other Amazonian riverine species in a basin-
wide context and hope this work can stimulate further research in the region. Our study
is the first to engage empirical model-based riverscape genetics in Amazon basin and to
develop resistance models in a riverscape genetics context. Therefore, it should provide a
framework to investigate spatial genetic patterns of other high-dispersal riverine species in
drainage systems.
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