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Abstract: Amazonia comprises a mosaic of contrasting habitats, with wide environmental heterogene-
ity at local and regional scales. In central Amazonia, upland forest (terra firme) is the predominant
forest type and seasonally flooded forests inundated by white- and black-water rivers (várzea and
igapó, respectively) represent around 20% of the forested areas. In this work, we took advantage of a
natural spatial arrangement of the main vegetation types in central Amazonia to investigate butterfly
assemblage structure in terra firme, várzea and igapó forests at the local scale. We sampled in the
low- and high-water seasons, combining active and passive sampling with traps placed in both the
understory and canopy. Terra firme supported the highest number of butterfly species, whereas várzea
forest provided the highest number of butterfly captures. The high species richness in terra firme may
reflect that this forest type is floristically richer than várzea and igapó. Várzea is a very productive
environment and may thus support a higher number of butterfly individuals than terra firme and igapó.
Most butterfly species (80.2%) were unique to a single forest type and 17 can be considered forest
type indicator species in this landscape. Floodplain forest environments are therefore an important
complement to terra firme in terms of butterfly species richness and conservation in Amazonia.

Keywords: butterflies; floodplain forest; indicator species; lepidoptera; species composition

1. Introduction

Amazonia is widely recognized as the most biodiverse biome in the world [1–3].
This high diversity is associated with the massive size of the biome, but is also partly
explained by its high habitat heterogeneity. Due to the differences in topography, soil and
water properties, high forest heterogeneity may be observed at both the local and regional
scales [4–6] with consequences for the associated fauna [7].

At the regional scale, the main macrohabitats are unflooded forests (hereafter, terra firme)
and seasonally flooded forests inundated by white- and black-water rivers (hereafter, várzea
and igapó, respectively). Terra firme forests lie above the maximum flood levels of lakes
and rivers and account for more than 82% of Amazonia [8]. In contrast, flooded forests are
situated on floodplains and cover approximately 17% of the basin [9]. The biota in these
forests must endure floods for up to 6 months per year [10]. However, várzea and igapó
forests differ significantly due to the type of water that inundate them [11,12]. White-water
rivers flooding várzea forests carry large amounts of nutrient-rich sediments from the Andes
and pre-Andean regions [13,14]. These floodplains are therefore exceptionally productive
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due to the deposition of these sediments with the annual floods [14]. The black-water
rivers inundating igapó forests are, on the other hand, relatively nutrient poor and more
acidic [11,14].

These environmental differences lead to pronounced changes in forest structure and in
floral and faunal composition between the different forest types. Previous studies have, for
example, shown that assemblages of trees [11,12,15], ants [16], primates [17], bats [18,19],
birds [20], and terrestrial vertebrates [21] differ significantly between these forest types.
Typically, terra firme contains the highest number of species, followed by várzea and igapó.
However, the Amazonian floodplain forests are probably some of the most species-rich
flooded forests in the world [11,22].

At local scales, habitat heterogeneity may also be high. The topographic gradient
of the floodplains influences the height and duration of the flood pulse [12,23], which
has been shown to be an important predictor of tree alpha diversity and tree species
distributions for both várzea [13,22,24,25] and igapó [26,27]. Many ecological processes, such
as flowering and fruiting cycles, are similarly closely tied to the seasonal floods [28,29].
Small topographic differences may also induce habitat heterogeneity in terra firme forests
that, in turn, may affect several terrestrial taxa [30–33].

Model organisms are good alternatives to standardize and/or delimit ecological
patterns among heterogeneous environments and their associated biotas [34,35]. Butter-
flies are often recognized as good model organisms due to a relatively robust taxonomic
resolution, their great abundance and diversity, and intimate host plant specificity in
the larval stage [36,37]. This renders them a relevant indicator group of environmental
change [38,39], such as changes in microclimate and host plant availability [35,40,41]. Most
butterfly species therefore have a clear environmental preference. For example, some
species are found largely in open areas, others in forest environments. In forests, some are
more adapted to the forest understory, others to the canopy [42–44]. Although butterflies
are charismatic animals and well-known animals [35,38], there is a conspicuous lack of
inventories and ecological studies of these organisms in the Brazilian Amazon [45,46].

In this study, we present the first comparison of butterfly assemblage composition in
adjacent terra firme, várzea, and igapó forests. More specifically, we investigated whether
species richness and abundance differed, and how assemblage composition varied among
the forest types. We expected to find that each forest type has a characteristic assemblage
composition, reflecting their environmental uniqueness. Species richness was expected to
be highest in terra firme due to the greater forest heterogeneity and lack of seasonal floods,
whereas abundance was expected to be highest in várzea and lowest in igapó due to their
contrasting productivity. Results are interpreted considering the differences experienced
by seasonal flooding, soil fertility, and forest structure. Finally, we list potential indicator
species of each forest type in this Amazonian landscape.

2. Materials and Methods
2.1. Study Area

This study was conducted at Uauaçu Lake (4◦14′ S, 62◦17′ W), located in the lower
Purus region near the confluence between the Purus and Solimões Rivers, central Amazonia,
Brazil (Figure 1). Most of the sampling area is part of the Piagaçu-Purus Sustainable
Development Reserve and data collection was carried out from October to November 2018
(low-water season) and from May to June 2019 (high-water season). The forests in this area
remain largely undisturbed and include a unique landscape mosaic containing terra firme,
várzea, and igapó. Despite being located close to two major white-water rivers, Uauaçu
Lake itself is a large crescent-shaped, black-water lake fed by water draining from the
surrounding terra firme forest [15]. Igapó forests are located on the floodplains along the lake
margins, whereas an extensive várzea forest occurs on the floodplain squeezed between the
Purus and Solimões Rivers (Figure 1).
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Figure 1. Location of the study and sampling points in the Uauaçu Lake region, state of Amazonas, Brazil. Black stars =
igapó, green stars = terra firme, and orange stars = várzea.

2.2. Sampling Design

Butterfly sampling was performed along three 2 km transects in each forest type
(Figure 1). We sampled the same transects in both the low-water and high-water season
using cylindrical Van Someren-Rydon type traps [47] and an entomological net. Traps
were installed and checked using a canoe in flooded forests during the high-water season.
Twenty traps (ten in the canopy and ten in the understory) containing bait composed
of fermenting bananas and brown sugar were placed 200 m apart along each transect.
Canopy trap heights varied according to the local forest stature. Each trap was kept
open for four days and checked every 48 h, totaling 1440 trap days. This sampling effort is
sufficient to detect approximately 70% of the fruit-feeding butterfly species in the region [48].
In order to sample individuals from other families and feeding guilds, we also used
standardized active searches with an entomological net. During active searches (performed
simultaneously with checking traps), the collector covered the transects at 1 km/h and
collected all butterflies sighted up to 2.5 m on each side of the transect [49,50]. In flooded
forests during the high-water season, active searches were performed from a canoe. The
active searches were performed at different times of the day (e.g., early morning, late
morning, early afternoon, and late afternoon) to sample species with different activity
patterns and were rotated among forest types.

Butterflies were identified to species and subspecies level using online guides (e.g.,
www.butterfliesofamerica.com, www.neotropicalbutterflies.com) and the taxonomic liter-
ature [51–55]. We used taxonomic references to confirm the current taxonomy of cryptic
butterflies [56–63] and all butterfly identifications were verified by an expert taxonomist.
All collected butterflies were deposited in the Entomological Collection of the National In-
stitute of Amazonian Research (INPA) and some individuals of the most abundant species
were also deposited in the Zoological Collection of the Federal University of Amazonas
(UFAM) and at the National Museum (UFRJ).

www.butterfliesofamerica.com
www.butterfliesofamerica.com
www.neotropicalbutterflies.com
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2.3. Statistical Analysis

All butterflies sampled by active searches and in traps (both strata) were pooled
by transect. The sample unit for all analyses is therefore transect in each season. We
used rarefaction curves to compare and estimate species richness among forest types with
different numbers of individuals collected [64]. The interpolated and extrapolated values
are based on Hill numbers (qD = 0) generated in the iNEXT package [65].

To check whether butterfly species composition differed within and between forest
types, we performed a permutational multivariate analysis of variance (PERMANOVA)
based on the Bray–Curtis dissimilarity measure. Forest type (terra firme, várzea, and igapó)
was the dependent variable, and p-values were calculated based on 999 permutations.
To visualize the assemblage composition in each forest type, we plotted a non-metric
multidimensional scaling (NMDS) ordination using the Bray–Curtis dissimilarity index,
using metaMDS function in the vegan package [66].

We performed an IndVal analysis [67] using the multipatt function in the indicspecies
package to identify indicator species of each forest type. In this case, IndVal components
“A” and “B” reflect how specific a species is to a particular forest type and how frequently
it is found in sample units belonging to this forest type, respectively [68]. All analyses were
performed using the R Studio program [69].

3. Results
3.1. The Uauaçu Lake Butterfly Community

We sampled a total of 726 individuals from 192 species representing six butterfly
families: Nymphalidae (102 species, 526 individuals), Riodinidae (50 species, 141 individ-
uals), Hesperiidae (18 species, 26 individuals), Lycaenidae (12 species, 17 individuals),
Pieridae (5 species, 10 individuals), and Papilionidae (5 species, 6 individuals, Table S1).
The most abundant subfamily was Satyrinae (384 individuals, 51 species), followed by
Riodininae (119 individuals, 42 species), and Biblidinae (60 individuals, 15 species). The
most abundant subfamily in each forest type was Satyrinae with 154, 191, and 39 individu-
als in terra firme, várzea, and igapó, respectively. The most abundant species in each forest
type was Pierella lena brasiliensis (C. Felder & R. Felder, 1862) (terra firme), Taygetis mermeria
(Cramer, 1776) (várzea), and Chloreuptychia chlorimene (Hübner, 1819) (igapó).

3.2. Butterfly Richness and Abundance

Terra firme supported the highest number of species (n = 101), followed by várzea
(n = 74) and igapó (n = 65). Várzea had the highest butterfly abundance (n = 297), followed
by terra firme (n = 287) and igapó (n = 142). Rarefaction curves did not reach an asymptote
for any of the forest types (Figure 2), suggesting that more species would likely be added
to the species inventory with increased sampling effort. However, the interpolated and
extrapolated curves show that terra firme has a steeper increase in expected number of
species and igapó would have more species than várzea if the sampling effort was increased
(Figure 2).

Few species were found in more than one environment (Figure 3). Várzea and
terra firme shared the same number of species (n = 12) with igapó. Species exclusive to
terra firme comprised 39.1% (n = 75) of the sampled species richness, whereas 25% (n = 48)
and 16.1% (n = 31) of species were exclusive to várzea and igapó, respectively (Figure 3).
In addition, most species were rare. Overall, 124 species were singletons (n = 95) or dou-
bletons (n = 29) accounting for 64.6% of the total species richness, but only 21% of the
sampled individuals (n = 153). The five most abundant species in terra firme, várzea, and
igapó accounted for 31% (n = 88), 41% (n = 123), and 30% (n = 43) of all individuals captured
in each forest type, respectively.
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Figure 3. Venn diagram of the number and percentage of species exclusive to or shared between each
forest type at Uauaçu Lake, central Amazonia, Brazil.

3.3. Butterfly Assemblage Composition

Butterfly assemblage composition differed between terra firme, várzea, and igapó (PER-
MANOVA, F2,17 = 4.47, p = 0.001). This can be clearly observed in the NMDS diagram,
which shows that samples distinctly cluster by forest type (Figure 4).

The indicator species analysis identified 17 species that can be considered forest type
indicators (Table 1). Terra firme had nine indicator species, várzea had five, and igapó
had three.
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Figure 4. NMDS ordination of the butterfly assemblages in terra firme, várzea, and igapó at Uauaçu
Lake, central Amazonia, Brazil. Green circles are terra firme, orange circles are várzea, and grey circles
are igapó sample units.

Table 1. Butterfly indicator species for the three forest types at Uauaçu Lake, central Amazonia, Brazil. Records = species
abundance and number of sample units in which the species was sampled (in parenthesis). Stat = the percentage of the
IndVal combination of “A” (specificity) and “B” (fidelity). p = probability of the indicator value.

Indicator Species Forest Type Records Stat p

Nubila nortia (Hewitson, 1862) Terra firme 20 (6) 100% 0.001
Bia actorion (Linnaeus, 1763) Terra firme 19 (5) 91.3% 0.004

Pierella lena brasiliensis (C. Felder & R. Felder, 1862) Terra firme 21 (5) 91.3% 0.005
Cithaerias aurora (C. Felder & R. Felder, 1862) Terra firme 9 (4) 81.6% 0.009

Nymphidium baeotia (Hewitson, 1853) Terra firme 7 (7) 83.3% 0.010
Haetera piera (Linnaeus, 1758) Terra firme 5 (4) 81.6% 0.014

Pierella chalybaea (Godman, 1905) Terra firme 18 (4) 81.6% 0.018
Scriptor sphenophorus (Lamas & Nakahara, 2020) Terra firme 6 (4) 81.6% 0.018

Taygetis laches (Fabricius, 1793) Terra firme 4 (4) 81.6% 0.019
Pseudodebis marpessa (Hewitson, 1862) Várzea 22 (6) 100% 0.001

Taygetis mermeria (Cramer, 1776) Várzea 42 (5) 91.3% 0.004
Magneuptychia ocnus (A. Butler, 1867) Várzea 15 (4) 81.6% 0.018

Taygetis rufomarginata (Staudinger, 1888) Várzea 9 (4) 81.6% 0.016
Pseudodebis valentina (Cramer, 1779) Várzea 22 (7) 80.2% 0.020

Archaeoprepona demophon demophon (Linnaeus, 1758) Igapó 6 (5) 91.3% 0.002
Heliconius antiochus (Linnaeus, 1767) Igapó 12 (6) 83.3% 0.014

Hermeuptychia undulata 1 (A. Butler, 1867) Igapó 6 (4) 81.6% 0.014
1 Recently removed from Paryphthimoides [61] and placed in Hermeuptychia (Zacca et al., unpubl. data).

4. Discussion

This is the first study to investigate how the butterfly community is structured in adja-
cent, yet very distinct, terra firme, várzea, and igapó forests in central Amazonia, highlighting
the relevance of environmental heterogeneity even at the local scale. As hypothesized,
our results revealed a marked difference in butterfly assemblages between forest types,
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underlining a high association between butterfly species and a specific forest type present
in the region.

4.1. Species Richness and Abundance

Terra firme supported the highest number of butterfly species, whereas várzea forest
provided the highest number of butterfly captures. This is a common pattern seen for
several different faunal taxa in the region, such as primates, birds, bats, and ants [16–18,70].
The slightly higher number of species sampled in terra firme may reflect that this forest type
is floristically richer than várzea and igapó [11,13]. Previous studies showed that herbivore
species richness is tightly linked to floristic diversity [71].

Due to the seasonal inundation, várzea and igapó contain fewer tree species [11,13] and
may thus contain fewer potential food and larval host plants. In addition, the seasonal
inundation effectively limits the use of understory habitats for up to 6 months annually,
potentially leading to an impoverished understory butterfly fauna in seasonally flooded
forests. Yet, the species accumulation curves did not reach an asymptote and it is likely
that further butterfly species will be detected with increased sampling. Although the total
number of species registered was the lowest in igapó, the species accumulation curves
suggest that igapó may contain more species than várzea. A potential explanation for this
finding is that igapó forests in the region are small in extent and located along the Uauaçu
Lake margin and large streams entering the lake, and therefore intersect terra firme forest.
In contrast, the large tract of várzea forest extends for many kilometers and most areas
are thus far from terra firme. Species largely residing in terra firme forest may therefore
opportunistically use igapó for resources or for simply traversing the area. A similar pattern
has been observed in primates in the same study area [17,72].

Várzea forest provided the highest number of butterfly captures, despite supporting
fewer species than terra firme. This high abundance is a common phenomenon found in
several other taxa [17,19] and is largely linked to the annual deposition of nutrient-rich silt
in várzea forest that make these systems exceptionally productive [10]. As the floodwaters
recede, large amounts of decomposing fruits are deposited on the forest floor [72,73],
potentially providing plentiful resources for adult butterflies.

4.2. Butterfly Assemblage Composition

Butterfly assemblages in each forest type were markedly different. This result is consis-
tent with previous work on other taxa in the region, such as birds [74], bats [19], and large
mammals [17]. The difference between terra firme and the two floodplain forests was largely
driven by the higher number of understory species, which prefer to fly close to the ground,
occurring in this forest type. This is reflected by the indicator species analysis where
understory species, such as low-flying Haeterini, were important indicators of terra firme.
Terra firme also had more species from other butterfly tribes, such as Nymphidiini, Satyrini,
Epicaliini, and Brassolini, possibly due to the higher floristic diversity in this forest type.

Várzea also supported unique assemblage but had more species in common with igapó
than with terra firme, perhaps reflecting the higher floristic similarity between these two
forest types compared to terra firme [15]. Interestingly, all indicator species captured in
várzea belong to the Satyrini tribe. These are understory butterflies readily collected via
baited traps and sweep-nets, and their host plants are mainly from the Poaceae family that
are abundant in flooded environments after the water recedes [75,76].

In igapó, the most representative butterfly tribe was Preponini, and Archaeoprepona
demophon demophon (Linnaeus, 1758) was an important indicator species. Despite being
host-plant generalists, some of its host plants are representatives of the Fabaceae and
Leguminosae families (for Prepona spp.), common in igapó [15,77], and the immature
Archaeoprepona spp. are polyphagous and feed on more than one plant family [41,78].
Preponini have agile flight, and individuals usually stay above the canopy and visit the
ground only to feed on fermented fruits and/or animal feces [79]. Igapó, which has a more
open canopy and understory compared to other environments [15], seems to be an ideal
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environment for this group, providing more light to acquire energy and fewer obstacles in
the forest for flight [18,80,81]. Other important species that were considered an indicator
of igapó were Heliconius antiochus (Linnaeus, 1767) and Hermeuptychia undulata (A. Butler,
1867). The former lives in riparian forests in Amazonia and roosts over water [82]. The
latter feeds Panicum sp. (Poaceae) and Schlera sp. (Cyperaceae) species, frequently found in
igapó during the low-water season [12,78].

The most abundant species of each forest type and the indicator species in our study
are commonly found in other regions of Amazonia. However, in this landscape context,
they clearly show high forest type specificity. Despite the butterfly fauna in the Brazilian
Amazonia having been studied for almost two centuries [83–85], there is a relatively small
number of community ecology studies in central Amazonia that use butterflies as model
organisms [44,80,86–89]. Most of these studies only sampled fruit-feeding butterflies with
baited traps, which favors some Nymphalidae species. The similarity of Nymphalidae
species between our study and other studies in Amazonia [87,88,90–93] is only 35%–60%.
This is likely due to our rapid inventories in each season and limited sample sizes, as most
other studies were long-term inventories [80,94] that allow a more complete sample of
the butterfly fauna. However, few other studies encompassed other butterfly families [47]
and our study therefore fills an important gap, presenting an updated list of all butterfly
families (except Hedylidae) for this Amazonian region.

5. Conclusions

Our results show that each forest type contains unique species assemblages, underlin-
ing a high level of habitat specificity among butterfly species present in the region. These
findings have contributed to a better understanding regarding the Amazonian butterfly
fauna, its ecological specificities, and assemblage structure across different forest types
in central Amazonia. Our study therefore highlights the importance of floodplain forests
to the regional species pool and the importance of protecting these forests to conserve
Amazonian biodiversity.
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